Skip to main content

Applications of contrast agents in cardiac MRI — pitfalls and new development

  • Chapter
  • 147 Accesses

Abstract

A summary of the applications of MR contrast agents in cardiovascular imaging is shown in Table 27.1. Some of these applications are addressed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-saadi N, Nagel E, Gross M, et al (2000) Non-invasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    Article  PubMed  CAS  Google Scholar 

  2. Atkinson D, Brant-Zwadzki M, Gillan G, et al (1994) Improved MR angiography: magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology 190:890–894

    PubMed  CAS  Google Scholar 

  3. Bakker CJ, Bos G, Weinmann HJ (2001) Passive tracking of catheters and guidwires by contrast-enhanced MR fluoroscopy. Magn Reson Med 45:17–23

    Article  PubMed  CAS  Google Scholar 

  4. Been M, Smith MA, Ridgway P (1988) Serial changes in the Tl magnetic relaxation parameter after myocardial infarction in man. Br Heart J 59:178–194

    Article  Google Scholar 

  5. Bremerich J, Buser P, Bongartz G et al (1997) Noninvasive stress testing of myocardial ischemia: comparison of MRI perfusion and wall motion analysis to 99mTcMIBI SPECT, relation to coronary angiography. Eur Radiol 7:990–995

    Article  PubMed  CAS  Google Scholar 

  6. Bremerich J, Roberts TP, Wendland MF, et al (2000) Three-dimensional MR imaging of pulmonary vessels and parencyma with NCI00150 Injection (Clariscan™). J Magn Reson Imaging 11:622–628

    Article  PubMed  CAS  Google Scholar 

  7. Bremerich J, Saeed M, Arheden H, et al (2000) Differentiation between normal and infarcted myocardium by myocardial cellular uptake of manganese. Radiology 216:524–530

    PubMed  CAS  Google Scholar 

  8. Bremerich J, Wendland MF, Arheden H, et al (1998) Microvascular injury in reperfused infarcted myocardium: noninvasive assessment with contrast-enhanced echoplanar magnetic resonance imaging. J Am Coll Cardiol 32:787–793

    Article  PubMed  CAS  Google Scholar 

  9. Bunce NH, Pennell DJ (1999) Coronary MRA — A clinical experience in Europe. J Magn Reson Imaging 10:721–731

    Article  PubMed  CAS  Google Scholar 

  10. Choi CJ, Haji-Momenian S, Dimaria J, et al (2002) Contrast washout by MRI identifies stunned myocardium in patients after reperfused myocardial infarction. J Cardiovasc Magn Reson 4:19 (Abstract)

    Google Scholar 

  11. Clarke SE, Weinmann HJ, Dai E, et al (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214:787–794

    PubMed  CAS  Google Scholar 

  12. Cullen JHS, Horsefield MA, Reek CR, et al (1999) A myocardial perfusion reserve index in humans using first-pass contrast-enhanced magnetic resonance imaging J Am Coll Cardiol 33:1386–1394

    Article  PubMed  CAS  Google Scholar 

  13. Danias PG, Stuber M, Edelman RR, et al (1999) Coronary MRA: a clinical experience in the United States. J Magn Reson Imaging 10:713–720

    Article  PubMed  CAS  Google Scholar 

  14. de Roos A, van Rossum AC, van der Wall EE, et al (1989) Reperfused and non-reperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MRI. Radiology 172:717–720

    PubMed  Google Scholar 

  15. de Roos A, van Voorthuisen AE (1991) Magnetic resonance imaging of the heart: perfusion, function, and structure. Curr Opin Radiol 13: 525–532

    Google Scholar 

  16. Dendale P, Franken PR, Block P, et al (1998) Contrast-enhanced and functional magnetic resonance imaging for the detection of viable myocardium after infarction. Am Heart J 135: 875–880

    Article  PubMed  CAS  Google Scholar 

  17. Dick AJ, Guttman MA, Hill JM, et al (2002) Targeted delivery of stem cells to porcine myocardial infarction guided by real-time magnetic resonance imaging. Am J Cardiol, Sept 24; TCT-313

    Google Scholar 

  18. Dion YM, Ben El Kadi H, Boudoux C, et al (2000) Endovascular procedures under near real-time magnetic resonance imaging guidance: an experimental feasibility study. J Vase Surg 32:1006–1014

    Article  CAS  Google Scholar 

  19. Dulce MC, Duerinckx AJ, Hartiala J, et al (1993) MR imaging of the myocardium using nonionic contrast medium: signal-intensity changes in patients with subacute myocardial infarction. Am J Roentgenol 160:963–970

    Article  CAS  Google Scholar 

  20. Dymarkowski S, Ni Y, Miao Y, et al (2002) Value of T2-weighted magnetic resonance imaging early after myocardial infarction in dogs. Invest Radiol 37:77–85

    Article  PubMed  Google Scholar 

  21. Eichstaedt WH, Felix F, Dougherty RC (1986) Magnetic resonance imaging at different stages of myocardial infarction using contrast agent gadolinium DTPA. Clin Cardiol 9:527–535

    Article  PubMed  CAS  Google Scholar 

  22. Fienno DS, Kim RJ, Chen EL, et al (2000) Contrast-enhanced MRI of myocardium at risk: distinction between reversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991

    Article  Google Scholar 

  23. Gerber BL, Bluemke DA, Chin BB, et al (2002) Single-vessel coronary artery stenosis: myocardial perfusion imaging with Gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentate dimeglumine. Radiology 225:104–112

    Article  PubMed  Google Scholar 

  24. Gerber BL, Garot J, Bluemke DA, et al (2002) Accuracy of contrast enhanced magnetic resonance imaging in predicting improvement of myocardial function in patients after acute myocardial infarction. Circulation 106:1083–1089

    Article  PubMed  Google Scholar 

  25. Gerber BL, Rochitte CE, Melin JA, et al (2000) Microvascular obstruction and left ventricular remodeling early after acute myocardial infarction. Circulation 101:2734–2741

    Article  PubMed  CAS  Google Scholar 

  26. Goyen M, Reuhm SG, Debartin JF (2000) MR-angiography: the role of contrast agents. Eur J Radiol 34:247–256

    Article  PubMed  CAS  Google Scholar 

  27. Grist T, Korosec F, Peters D, et al (1998) Steady-state and dynamic MR angiographic imaging with MS-325: initial experience in humans. Radiology 207:539–544

    PubMed  CAS  Google Scholar 

  28. Haase A. Snapshot FLASH MRI (1990) Application to T1, T2 and chemical-shift imaging. Magn Reson Med 133:77–89

    Article  Google Scholar 

  29. Hatabu H, Gaa J, Kim D, et al (1996) Pulmonary perfusion and angiography: evaluation with breath hold enhanced three dimensional fast imaging steady state percession MR imaging with short TR and TE. Am J Roentgenol 161: 635–655

    Google Scholar 

  30. Hatabu H, Gaa J, Kim D, et al (1996) Pulmonary perfusion: qualitative assessment with dynamic contrast-enhanced MRI using ultrashort TE and inversion recovery turbo FLASH. Magn Reson Med 36:503–508

    Article  PubMed  CAS  Google Scholar 

  31. Higgins CB, Saeed M, Wendland MF, et al (1994) Evaluation of myocardial function and perfusion in ischemic heart disease. MAGMA 2:177–184

    Article  Google Scholar 

  32. Hill JM, Dick AJ, Raman VK, et al (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  PubMed  Google Scholar 

  33. Ho KY, Leiner T, de Haan MW, et al (1998) Peripheral vascular tree stenosis: evaluation with moving-bed infusion-tracking MR angiography. Radiology 206:683–692

    PubMed  CAS  Google Scholar 

  34. Jeong AK, Choi SI, Kim DH, et al (2001) Evaluation by contrast-enhanced MR imaging of the lateral border zone in reperfused myocardial infarction in a cat model. Koean J Radiol 2:21–27

    Article  CAS  Google Scholar 

  35. Judd RM, Lugo-Olivieri CH, Arai M, et al (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910

    Article  PubMed  CAS  Google Scholar 

  36. Kellman P, Arial AE, McVeigh ER, et al (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372–383

    Article  PubMed  Google Scholar 

  37. Kim RJ, Fieno DS, Parrish TB, et al (1999) Relationship of MRI delayed contrast enhancement to reversible injury, infarct age and contractile function. Circulation 100:1992–2002

    Article  PubMed  CAS  Google Scholar 

  38. Kim RJ, Hillenbrand HB, Judd RM (2000) Evaluation of myocardial viability by MRI. Herz 25:417–430

    Article  PubMed  CAS  Google Scholar 

  39. Kim RJ, Wu E, Rafael A, et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  40. Klein C, Nagel E, Schnackenburg B, et al (2000) The intravascular contrast agent Clariscan™ (NC100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. MAGMA 11:65–67

    PubMed  CAS  Google Scholar 

  41. Kraitchman DL, Wilke N, Hexeberg, et al (1996) Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med 35:771–780

    Article  PubMed  CAS  Google Scholar 

  42. Kraitchman DL, Heldman AW, Atalar E, et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  43. Kramer CM (2000) Current and future applications of cardiovascular magnetic resonance imaging. Cardiol Rev 8:216–222

    Article  PubMed  CAS  Google Scholar 

  44. Krombach GA, Higgins CH, Chujo M, et al (2002) Blood pool enhanced MRI detects suppression of microvascular permeability in early post-infarction reperfusion after nicorandil therapy. Magn Reson Med 47:896–902

    Article  PubMed  CAS  Google Scholar 

  45. Krombach GA, Saeed M, Higgins CB, et al (2003) Contrast enhanced MRI of stunned myocardium using Mn-based MRI contrast agent. Radiology (in press)

    Google Scholar 

  46. Krombach GA, Wendland MF, Higgins CH, et al (2002) MR imaging of spatial extent of microvascular injury in reperfused ischemically injured rat myocardium: value of blood pool ultrasmall superparamagnetic particles of iron oxide. Radiology 225:479–486

    Article  PubMed  Google Scholar 

  47. Kuehne T, Saeed M, Moore P, et al (2002) Influence of blood-pool contrast media on MR imaging and flow measurements in the presence of pulmonary arterial stents in swine. Radiology. 223:439–45

    Article  PubMed  Google Scholar 

  48. Laub G (1999) Principles of contrast-enhanced MR angiography. Basic and clinical applications. MRI Clinics of North America 7:783–795

    PubMed  CAS  Google Scholar 

  49. Lauerma K, Saeed M, Wendland MF, et al (1994) The use of contrast-enhanced magnetic resonance imaging to define ischemic injury after reperfusion: comparison in normal and hypertrophied hearts. Invest Radiol 29:527–535

    Article  PubMed  CAS  Google Scholar 

  50. Lauerma K, Saeed M, Wendland MF, et al (1996) Verapamil reduces the size of reperfused ischemically injured myocardium in hypertrophied rat hearts as assessed by magnetic resonance imaging. Am Heart J 131:14–23

    Article  PubMed  CAS  Google Scholar 

  51. Lauffer RB, Parmelle DJ, Dunham SU, et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538

    PubMed  CAS  Google Scholar 

  52. Lederman RJ, Uttman MA, Peters DC, et al (2002) Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 105:1282–1284

    PubMed  Google Scholar 

  53. Li D, Zheng J, Weinmann HJ (2001) Contrast-enhanced MR imaging of the coronary arteries: comparison of intra-and extravascular contrast agents in swine. Radiology 218:760–678

    Google Scholar 

  54. Lim T-H, Choi SH (1999) MRI of myocardial infarction. J Magn Reson Imaging 10:686–693

    Article  PubMed  CAS  Google Scholar 

  55. Lim TH, Lee JH, Kim YH, et al (1993) Occlusive and reperfused myocardial infarction: detection by using MR imaging with gadolinium polylysine enhancement. Radiology 189:765–772

    PubMed  CAS  Google Scholar 

  56. Lorenz CH, Johansson LOM (1999) Contrast-enhanced coronary MRA. J Magn Reson Imaging 10:703–708

    Article  PubMed  CAS  Google Scholar 

  57. Lund G, Higgins CB, Wendland MF, et al (2001) Effect of nicorandil on ischemically injured myocardium assessed by contrast enhanced and functional magnetic resonance imaging. Radiology 221:676–682

    Article  PubMed  CAS  Google Scholar 

  58. Maki JH, Chenevert TC, Prince MR (2000) Contrast-enhanced MR angiography. Applied Radiology, March Issue 5-20

    Google Scholar 

  59. Manke C, Nitz WR, Djavidani B, et al (2001) MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology. 219:527–34

    PubMed  CAS  Google Scholar 

  60. Martin A, Weber O, Saeed M, et al (2003) Steady state imaging for visualization of endovascular interventions. Magn Reson Med 50:434–438

    Article  PubMed  Google Scholar 

  61. Matsumoto AH, Teitelbaum GP, Carvlin MJ, et al (1990) Gadolinium enhanced MR imaging of vascular stents. J Comput Assist Tomogr 14: 357–361

    Article  PubMed  CAS  Google Scholar 

  62. McNamara MT, Higgins CB (1984) Magnetic resonance imaging of chronic myocardial infarcts in man. Am J Roentgenol 143:1135–1141

    Article  Google Scholar 

  63. Meaney JF, Weg JG, Chenevert TL, et al (1997) Diagnosis of pulmonary embolism with magnetic resonance angiography. New Engl J Med 336:1422–1427

    Article  PubMed  CAS  Google Scholar 

  64. Meaney JFM (1998) MR angiography of the peripheral arteries. In: Ferris EJm Waltman AC, Fishman EK, Polak JF, Potchen EJ (eds) Categorical Course in Diagnostic Radiology. Vascular Imaging RSNA Syllabus, pp 201

    Google Scholar 

  65. Ni Y, Pislaru C, Bosmans H, et al (2001) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11:876–883

    Article  PubMed  CAS  Google Scholar 

  66. Nitatori T, Yoshino H, Yokoyama K, et al (1999) Coronary MR angiography — A clinical experience in Japan. J Magn Reson Imaging 10:709

    Article  PubMed  CAS  Google Scholar 

  67. Oshiniski JN, Yang Z, Jones JR, et al (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    Article  Google Scholar 

  68. Potchen JE, Haake EM, Siebert JE (eds) (1993) Magnetic resonance angiography: concepts and application. Mosby, St. Louis, (General reading)

    Google Scholar 

  69. Prince MR, Grist TM, Debartin JF (eds) (1997) 3D contrast MR angiography. Springer Berlin, pp 16, 17, 26

    Book  Google Scholar 

  70. Prince MR (1998) Contrast-enhanced MR angiography theory and optimization. Magn Reson Imaging N Am 6:257–267

    CAS  Google Scholar 

  71. Prince MR (1994) Gadolinium-enhanced MR aortograpyhy. Radiology 191:155–164

    PubMed  CAS  Google Scholar 

  72. Quinn SF, Shelet RC, Semonsen KG, et al (1998) Aortic and lower-extremity arterial disease: evaluation with MR angiography versus conventional angiography. Radiology 206:693–701

    PubMed  CAS  Google Scholar 

  73. Roberts HC, Saeed M, Roberts TPL, et al (1999) MRI of acute myocardial ischemia: comparing a new contrast agent, Gd-DTPA-24-cascade-polymer, with Gd-DTPA. J Magn Reson Imaging 9:204–209

    Article  PubMed  CAS  Google Scholar 

  74. Rochitte CE, Lima JA, Bluemke DA, et al (1998) Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 98:1006–1014

    Article  PubMed  CAS  Google Scholar 

  75. Rogers WJ, Kramer CM, Geskin G, et al (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99:744–750

    Article  PubMed  Google Scholar 

  76. Saeed M, Bremerich J, Wendland MF, et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257

    PubMed  CAS  Google Scholar 

  77. Saeed M, Lee R, Martin A et al (2003) Transendocardial delivery of extracellular markers using a combination of x-ray and MR fluoroscopy (XMR)-guidance: A feasibility study in dogs. Radiology (in press)

    Google Scholar 

  78. Saeed M, Lund G, Wendland MF, et al (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103: 871–876

    Article  PubMed  CAS  Google Scholar 

  79. Saeed M, Watzinger N, Krombach GA, et al (2002) Left ventricular remodeling after infarction: sequential MR imaging with oral nicorandil therapy in rat model. Radiology 224:830–837

    Article  PubMed  CAS  Google Scholar 

  80. Saeed M, Wendland MF, Engelbrecht M, et al (1998) Value of blood pool contrast agents in magnetic resonance angiography of the pelvis and lower extremities. Eur Radiol 8:1047–1053

    Article  PubMed  CAS  Google Scholar 

  81. Saeed M, Wendland MF, Lauerma K, et al (1995) Detection of myocardial ischemia using first pass contrast-enhanced inversion recovery and driven equilibrium fast GRE imaging. J Magn Reson Imaging 5:515–523

    Article  PubMed  CAS  Google Scholar 

  82. Saeed M, Wendland MF, Masui T, et al (1991) Myocardial infarction: assessment with an intravascular MR contrast medium. Radiology 180:153–160

    PubMed  CAS  Google Scholar 

  83. Saeed M, Wendland MF, Masui T, et al (1994) Myocardial infarctions on Tl-and susceptibility-enhanced MRI: evidence for loss of compartmentalization of contrast media. Magn Reson Med 31:31–39

    Article  PubMed  CAS  Google Scholar 

  84. Saeed M, Wendland MF, Szolar D, et al (1996) Quantification of the extent of area at risk with fast contrast-enhanced magnetic resonance imaging in experimental coronary artery stenosis. Am Heart J 132:921–932

    Article  PubMed  CAS  Google Scholar 

  85. Saeed M, Wendland MF, Watzinger N, et al (2000) MR contrast media for myocardial viability, microvascular integrity and perfusion. Eur J Radiol 34:179

    Article  PubMed  CAS  Google Scholar 

  86. Saeed M, Wendland MF, Yu KK, et al (1994) Identification of myocardial reperfusion with echo planar magnetic resonance imaging: discrimination between occlusive and reperfused infarctions. Circulation 90:1492–1501

    Article  PubMed  CAS  Google Scholar 

  87. Sakuma H, O, Sullivon M, Lukas J, et al (1994) Effect of magnetic susceptibility contrast medium on myocardial signal intensity with fast gradient-recalled echo and spin-echo MR imaging. Initial experience in humans. Radiology 190: 161–166

    PubMed  CAS  Google Scholar 

  88. Sakuma H, Wendland MF, Saeed M, et al (1995) Multislice measurement of first pass transit of Gd-BOPTA/Dimeg in normal and ischemic myocardium in dogs. Acad Radiol 2:864–870

    Article  PubMed  CAS  Google Scholar 

  89. Sandestede JJW, Lipke C, Baer M, et al (2000) Analysis of first-pass and delayed contrast-enhancement patterns of dysfunctional myocardium on MR imaging: use in the prediction of myocardial viability. Am J Roentgenol 174: 1737–1740

    Article  Google Scholar 

  90. Schaefer S, van Tyen R, Saloner D (1992) Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans. Radiology 185:795–801

    PubMed  CAS  Google Scholar 

  91. Schalla S, Wendkland MF, Higgins CB, et al (2003) Accentuation of high susceptibility of hypertrophied myocardium to ischemia using cardiac function and gadophrin-enhanced MRI. Magn Reson Med (in press)

    Google Scholar 

  92. Schwitter J, Nanz D, Kneifel S, et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary artery angiography. Circulation 103: 2230–2235

    Article  PubMed  CAS  Google Scholar 

  93. Schwitter J, Saeed M, Wendland MF, et al (1999) Assessment of myocardial function and perfusion in a canine model of non-occlusive coronary artery stenosis using fast magnetic resonance imaging. J Magn Reson Imaging 9:101–110

    Article  PubMed  CAS  Google Scholar 

  94. Schwitter J, Saeed M, Wendland MF, et al (1997) Influence of the severity of myocardial injury on the distribution of macromolecules: extra versus intra-vascular gadolinium-based MR contrast agents. J Am Coll Cardiol 30:1086–1094

    Article  PubMed  CAS  Google Scholar 

  95. Shetty AN, Bis KG, Vrachliotis TG, et al (1998) Contrast-enhanced 3D MRA with centric ordering in K space: a preliminary clinical experience in imaging the abdominal aorta and renal and peripheral arterial vasculature. J Magn Reson Imaging 8:603–615

    Article  PubMed  CAS  Google Scholar 

  96. Steiner P, McKinnon GC, Romanowski B, et al (1997) Contrast-enhanced, ultrafast 3D pulmonary MR angiography in a single breath hold: initial assessment of imaging performance. J Magn Reson Imaging 7:177–182

    Article  PubMed  CAS  Google Scholar 

  97. Stillman AE, Wilke N, Li D, et al (1996) Ultrasmall super paramagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20:51–55

    Article  PubMed  CAS  Google Scholar 

  98. Sueyoshi E, Sakamoto I, Matsuoka Y, et al (2000) Symptomatic peripheral vascular tree stenosis. Comparison of subtracted and nonsubtracted 3D contrast-enhanced MR angiography with fat suppression. Acta Radiol 41:133–138

    Article  PubMed  CAS  Google Scholar 

  99. Szolar DH, Saeed M, Wendland MF, et al (1996) MR imaging characterization of postischemic myocardial dysfunction (“stunned myocardium”): relationship between functional and perfusion abnormalities. J Magn Reson Imaging 6:615–624

    Article  PubMed  CAS  Google Scholar 

  100. Taylor AM, Panting JR, Keegan J, et al (1999) Safety and preliminary findings with the intravascular contrast agent NCI00150 Injection for MR coronary angiography. J Magn Reson Imaging 9:220–227

    Article  PubMed  CAS  Google Scholar 

  101. van Dijkman PR, van der Wall EE, de Roos A, et al (1991) Acute, subacute, and chronic myocardial infarction: quantitative analysis of gadolinium-enhanced MR imaging. Radiology 180:147–151

    PubMed  Google Scholar 

  102. van Rossum AB, Pattynama PM, Ton ER, et al (1996) Pulmonary embolism: validation of spiral CT angiography in 149 patients. Radiology 201:467–470

    PubMed  Google Scholar 

  103. van Rossum AC, Visser FC, Van Eenige MJ, et al (1990) Value of gadolinium-deithylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 65:845–851

    Article  PubMed  Google Scholar 

  104. Watzinger N, Lund G, Higgins CB, et al (2002) A The potential of contrast enhanced magnetic resonance imaging for predicting left ventricular remodeling. J Magn Reson Imaging

    Google Scholar 

  105. Wedeking P, Sotak CH, Telser J, et al (1992) Quantitative dependence of MR signal intensity on tissue concentration of Gd(HP-D03A) in the nephrectomized rat. Magn Reson Imaging 10:97–108

    Article  PubMed  CAS  Google Scholar 

  106. Wendland MF, Saeed M, Lund G, et al (1999) Contrast-enhanced MRI for qualification of myocardial viability. J Magn Reson Imaging 10:694–702

    Article  PubMed  CAS  Google Scholar 

  107. Wendland MF, Saeed M, Masui T, Derugin N, Higgins CB (1993) First pass of an MR susceptibility contrast agent through normal and ischemic heart: gradient-recalled echo-planar imaging. J Magn Reson Imaging 3:755–760

    Article  PubMed  CAS  Google Scholar 

  108. Wilke N, Jerosch-Herold M, Zenovich A, et al (1999) Magnetic resonance first-pass myocardial perfusion: clinical validation and future applications. J Magn Reson Imaging 10:676–685

    Article  PubMed  CAS  Google Scholar 

  109. Wilke N, Jerosch-Herold M (1997) MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Cardiac Imaging 13:205–218

    Article  Google Scholar 

  110. Wilke N, Kroll K, Merkle H, et al (1995) Regional myocardial blood volume estimated with MR first pass imaging and polylysine-GdDTPA in the dog. J Magn Reson Imaging 5:227–237

    Article  PubMed  CAS  Google Scholar 

  111. Wilke N, Machnig T, Engels G, et al (1990) Dynamic perfusion studies by ultrafast MRI: initial clinical results from cardiology. Electromedica 58:102–108

    Google Scholar 

  112. Wilke N, Simm C, Zhang J, et al (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497

    Article  PubMed  CAS  Google Scholar 

  113. Wilman A, Reider S, King B, et al (1997) Fluoroscopically triggered contrast-enhanced three dimensional MR angiography with elliptical ventric view order: application to the renal arteries. Radiology 205:137–146

    PubMed  CAS  Google Scholar 

  114. Wolff SD (2002) Results of diagnostic trials of magnetic resonance angiography with MS-325, a blood pool contrast agent, for detection of peripheral vascular disease in the aortoiliac region. Am J Cardiol (131H) [Abstract]

    Google Scholar 

  115. Woodrad PK, Li D, Zheng J, et al (1999) Current developments and future direction of coronary magnetic resonance angiography. Coronary Artery Dis 10:135–140

    Article  Google Scholar 

  116. Wu E, Judd RM, Vargas JD, et al (2001) Visualization of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  CAS  Google Scholar 

  117. Wu KC, Kim RJ, Bluemke DA, et al (1998) Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol 32:1756–1764

    Article  PubMed  CAS  Google Scholar 

  118. Wyttenbach R, Saeed M, Wendland MF, et al (1999) Detection of acute myocardial ischemia using first-pass dynamic of MN-DPDP on inversion recovery echo planar imaging. J Magn Reson Imaging 9:209–241

    Article  PubMed  CAS  Google Scholar 

  119. Yamashita Y, Mitsuzaki K, Ogata I, et al (1998) Three-dimensional high-resolution dynamic contrast-enhanced MR angiography of the pelvis and lower extremities with use of a phased array coil and subtraction: diagnosis accuracy. J Magn Reson Imaging 8:1066–1072

    Article  PubMed  CAS  Google Scholar 

  120. Yang X, Atalar E, Li D, et al (2001) Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation 104:1588–1590

    Article  PubMed  CAS  Google Scholar 

  121. Yu KK, Saeed M, Wendland MF, et al (1993) Comparison of Tl-enhancing and magnetic susceptibility magnetic resonance contrast agents for demarcation of the jeopardy area in experimental myocardial infarction. Invest Radiol 28:1015–1023

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saeed, M. (2004). Applications of contrast agents in cardiac MRI — pitfalls and new development. In: Nagel, E., van Rossum, A.C., Fleck, E. (eds) Cardiovascular Magnetic Resonance. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-7985-1932-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1932-9_27

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-62152-9

  • Online ISBN: 978-3-7985-1932-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics