Magnetic resonance spectroscopy of the heart

  • Stefan Neubauer


The signal source for MR imaging are exclusively the hydrogen nuclei of water and fat molecules. In contrast, MR spectroscopy (MRS) allows for the investigation of additional atomic nuclei, provided that these possess an uneven number of protons or neutrons or of both. Nuclei of interest for metabolic MRS studies are shown in Table 25.1. Particularly important are the nuclei 1H (protons from metabolites other than water and fat molecules), 13C, 19F, 23Na, 31P, 39K and 87Rb. In principle, a large number of clinical questions could be addressed with cardiac MRS. The main limitation of the method, however, is its low sensitivity of signal detection: MRS-detectable atomic nuclei have a substantially lower intrinsic MR sensitivity than 1H, and, in addition, they are present in concentrations several orders of magnitude lower than those of water and fat 1H molecules.

NA Natural Abundance (%)


Atomic Nucleus Magnetic Resonance Spectroscopy Dilate Cardiomyopathy Hydrogen Nucleus Uneven Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auffermann W, Chew WM, Wolfe CL, Tavares NJ, Parmley WW, Semelka RC, Donnelly T, Chatterjee K, Higgins CB (1991) Normal and diffucsely abnormal myocardium in humans: functional and metabolic characterization with P-31 MR spectroscopy and cine MR imaging. Radiology 179:253–259PubMedGoogle Scholar
  2. 2.
    Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 3IP NMR magnetization transfer study. J Biol Chem 260:3512PubMedGoogle Scholar
  3. 3.
    Bittl JA, Ingwall JS (1987) Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium. Circulation 75:196–101Google Scholar
  4. 4.
    Bottomley PA (1994) MR spectroscopy of the human heart: the status and the challenges. Radiology 191:593–612PubMedGoogle Scholar
  5. 5.
    Bottomley PA, Hardy CJ (1992) Mapping creatine kinase reaction rates in human brain and heart with 4 tesla saturation transfer 31P NMR. J Magn Reson 99:443–448Google Scholar
  6. 6.
    Bottomley PA, Weiss RG (1998) Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 351:714–718PubMedCrossRefGoogle Scholar
  7. 7.
    Bottomley PA, Hardy CJ, Roemer PB (1990) Phosphate metabolite imaging and concentration measurements in human heart by nuclear magnetic resonance. Magn Reson Med 14:425–434PubMedCrossRefGoogle Scholar
  8. 8.
    Bottomley PA, Weiss RG, Hardy CJ, Baumgartner WA (1991) Myocardial high-energy phosphate metabolism and allograft rejection in patients with heart transplants. Radiology 181:67–75PubMedGoogle Scholar
  9. 9.
    Bottomley PA, Atalar E, Weiss RG (1996) Human cardiac high-energy phosphate metabolite concentrations by ID-resolved NMR spectroscopy. Magn Reson Med 35:664–70PubMedCrossRefGoogle Scholar
  10. 10.
    Buchthal SD, Merz CN, Rogers WJ, Pepine CJ, Reichek N, Sharaf BL, Reis S, Kelsey SF, Pohost GM (2000) Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Eng J Med 342:829–835CrossRefGoogle Scholar
  11. 11.
    Clarke K, O’Connor AJ, Willis RJ (1987) Temporal relation between energy metabolism and myocardial function during ischemia and reperfusion. Am J Physiol 253:H412–421PubMedGoogle Scholar
  12. 12.
    Clarke K, Stewart LC, Neubauer S, Balschi JA, Smith TW, Ingwall JS, Nedelec JF, Humphrey SM, Kleber AG, Springer CS Jr (1993) Extracellular volume and transsarcolemmal proton movement during ischemia and reperfusion: a 31P NMR spectroscopic study of the isovolumic rat heart. NMR Biomed 6:278–286PubMedCrossRefGoogle Scholar
  13. 13.
    Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338:973–976PubMedCrossRefGoogle Scholar
  14. 14.
    DeLayre JL, Ingwall JS, Malloy C, Fossel ET (1981) Gated sodium-23 nuclear magnetic resonance images of an isolated perfused working rat heart. Science 212:935–936PubMedCrossRefGoogle Scholar
  15. 15.
    de Roos A, Doornbos J, Luyten PR, Oosterwaal LJ, van der Wall EE, den Hollander JA (1992) Cardiac metabolism in patients with dilated and hypertrophic cardiomyopathy: assessment with proton-decoupled P-31 MR spectroscopy. J Magn Reson Imaging 2:711–719PubMedCrossRefGoogle Scholar
  16. 16.
    Flameng W, Vanhaecke J, Van Belle H, Borgers M, De Beer L, Minten J (1987) Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional function in humans. J Am Coll Cardiol 9:1235–1242PubMedCrossRefGoogle Scholar
  17. 17.
    Forsen S, Hofman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901CrossRefGoogle Scholar
  18. 18.
    Fraser CD Jr, Chacko VP, Jacobus WE, Mueller P, Soulen RL, Hutchins GM, Reitz BA, Baumgartner WA (1990) Early phosphorus 31 nuclear magnetic resonance bioenergetic changes potentially predict rejection in heterotopic cardiac allografts. J Heart Transplant 9:197–204PubMedGoogle Scholar
  19. 19.
    Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122:795–801PubMedCrossRefGoogle Scholar
  20. 20.
    Horn M, Weidensteiner C, Lanz T, Neubauer S, von Kienlin M (1998) Myocardial Na+ content after infarction during scar development. Magma 6:179–180PubMedGoogle Scholar
  21. 21.
    Ingwall JS (1982) Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol 242:H729–44PubMedGoogle Scholar
  22. 22.
    Ingwall JS (1995) How high does intracellular sodium rise during acute myocardial ischaemia? A view from NMR spectroscopy. Cardiovascular Research 29:2Google Scholar
  23. 23.
    Jung WI, Sieverding L, Breuer J, Hoess T, Widmaier S, Schmidt O, Bunse M, van Erckelens F, Apitz J, Lutz O, Dietze GJ (1998) 3IP NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. Circulation 97:2536–2542PubMedCrossRefGoogle Scholar
  24. 24.
    Kim RJ, Lima JAC, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM (1997) Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95:1877–1885PubMedCrossRefGoogle Scholar
  25. 25.
    Kreutzer U, Jue T (1991) 1H-nuclear magnetic resonance deoxymyoglobin signal as indicator of intracellular oxygenation in myocardium. Am J Physiol 261:H2091–2097PubMedGoogle Scholar
  26. 26.
    Lamb HJ, Beyerbacht HP, van der Laarse A, Stoel BC, Doornbos J, van der Wall EE, de Roos A (1999) Diastolic Dysfunction in Hypertensive Heart Disease Is Associated With Altered Myocardial Metabolism. Circulation 99:2261–2267PubMedCrossRefGoogle Scholar
  27. 27.
    Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res 78:893–902PubMedCrossRefGoogle Scholar
  28. 28.
    Meininger M, Landschlitz W, Beer M, Seyfarth T, Horn M, Pabst T, Haase A, Hahn D, Neubauer S, von Kienlin M (1999) Concentrations of human cardiac phosphorus metabolites determined by SLOOP 31P NMR spectroscopy. MRM 41:657–663CrossRefGoogle Scholar
  29. 29.
    Menon RS, Hendrich K (1992) 31P NMR spectroscopy of human heart at 4T: detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and subendocardium. Magn Reson Med 26:368–376PubMedCrossRefGoogle Scholar
  30. 30.
    Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS (1995) Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 91:1824–1833PubMedCrossRefGoogle Scholar
  31. 31.
    Neubauer S (1999) High-energy phosphate metabolism in normal, hypertrophied and failing human myocardium. Heart Failure Reviews 4:269–280CrossRefGoogle Scholar
  32. 32.
    Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS (1988) Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circulation Research 63:1–15PubMedCrossRefGoogle Scholar
  33. 33.
    Neubauer S, Ertl G, Krahe T, Schindler R, Hillenbrand H, Lackner K, Kochsiek K (1991) Experimentelle und klinische Möglichkeiten der MR-Spektroskopie des Herzens. Z Kardiol 80:25–36PubMedGoogle Scholar
  34. 34.
    Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K, Ertl G (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86:1810–1818PubMedCrossRefGoogle Scholar
  35. 35.
    Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS et al. (1995) Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 95:1092–1100PubMedCrossRefGoogle Scholar
  36. 36.
    Neubauer S, Horn M, Pabst T, Gödde M, Lübke D, Illing B, Hahn D, Ertl G (1995) Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated heart muscle disease. Eur Heart J 16 (Suppl 0):115–118PubMedCrossRefGoogle Scholar
  37. 37.
    Neubauer S, Horn M, Pabst T, Harre K, Strömer H, Bertsch G, Sandstede J, Ertl G, Hahn D, Kochsiek K (1997) Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. J Investig Med 45:453–462PubMedGoogle Scholar
  38. 38.
    Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196PubMedCrossRefGoogle Scholar
  39. 39.
    Okada MKM, Inubushi T, Kinoshita M (1998) Influence of aging or left ventricular hypertrophy on the human heart: Contents of phosphorus metabolites measured by 31P MRS. MRM 39:772–782CrossRefGoogle Scholar
  40. 40.
    Pabst T, Sandstede J, Beer M, Kenn W, von Kienlin M, Neubauer S, Hahn D (in press) Optimization of ECG-triggered 3D 23Na MRI of the human heart. Magn Reson MedGoogle Scholar
  41. 41.
    Pluim BM, Lamb HJ, Kayser HW, Leujes F, Beyerbacht HP, Zwinderman AH, van der Laarse A, Vliegen HW, de Roos A, van der Wall EE (1998) Functional and metabolic evaluation of the athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97:666–672PubMedCrossRefGoogle Scholar
  42. 42.
    Pohmann R, Von Kienlin M (2001) Accurate phosphorus metabolite images of the human heart by 3D acquisition-weigthed CSI. Magn Reson Med 45:817–826PubMedCrossRefGoogle Scholar
  43. 43.
    Rajagopalan B, Blackledge MJ, McKenna WJ, Bolas N, Radda GK (1987) Measurement of phosphocreatine to ATP ratio in normal and diseased human heart by 31P magnetic reso-nance spectroscopy using the rotating frame-depth selection technique. Ann N Y Acad Sci 508:321–332PubMedCrossRefGoogle Scholar
  44. 44.
    Schaefer S, Gober JR, Schwartz GG, Twieg DB, Weiner MW, Massie B (1990) In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease. Am J Cardiol 65:1154–1161PubMedCrossRefGoogle Scholar
  45. 45.
    Schneider J, Fekete E, Weisser A, Neubauer S, von Kienlin M (2000) Reduced (1)H-NMR visibility of creatine in isolated rat hearts. Magn Reson Med 43:497–502PubMedCrossRefGoogle Scholar
  46. 46.
    Spirito P, Seidman CE, McKenna WJ, Maron BJ (1997) The management of hypertrophic cardiomyopathy. New Engl J Med 336/11:775–785CrossRefGoogle Scholar
  47. 47.
    Springer CS Jr, Pike MM, Balschi JA, Chu SC, Frazier JC, Ingwall JS, Smith TW (1985) Use of shift reagents for nuclear magnetic resonance studies of the kinetics of ion transfer in cells and perfused hearts. Circulation 72:Iv89–93PubMedGoogle Scholar
  48. 48.
    Ugurbil K, Petein M, Madian R, Michurski S, Cohn JN, From AH (1984) High resolution proton NMR studies of perfused rat hearts. FEBS letters 167:73–78PubMedCrossRefGoogle Scholar
  49. 49.
    Van Dobbenburgh JO, Lahpor JR, Woolley SR, de Jonge N, Klopping C, Van Echteld CJ (1996) Functional recovery after human heart transplantation is related to the metabolic condition of the hypothermic donor heart. Circulation 94:2831–2836PubMedCrossRefGoogle Scholar
  50. 50.
    von Kienlin M, Mejia R (1991) Spectral localization with optimal pointspread function. Magn Reson Med 94:268–287Google Scholar
  51. 51.
    Von Kienlin M, Rösch C, Le Fur Y, Behr W, Roder F, Haase A, Horn M, Illing B, Hu K, Ertl G, Neubauer S (1998) Three-dimensional 31P magnetic resonance spectroscopic imaging of regional high-energy phosphate metabolism in injured rat heart. Magn Reson Med 39:731–741CrossRefGoogle Scholar
  52. 52.
    Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The “phosphocreatine circuit” for cellular energy homeostasis. Biophys J 281:21–40Google Scholar
  53. 53.
    Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease [see comments]. N Engl J Med 323:1593–1600PubMedCrossRefGoogle Scholar
  54. 54.
    Yabe T, Mitsunami K, Okada M, Morikawa S, Inubushi T, Kinoshita M (1994) Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation 89:1709–716PubMedCrossRefGoogle Scholar
  55. 55.
    Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy [see comments]. Circulation 92:15–23PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang J, Merkle H, Hendrich K, Garwood M, From AH, Ugurbil K, Bache RJ (1993) Bioenergetic abnormalities associated with severe left ventricular hypertrophy. J Clin Invest 92:993–1003PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang J, Wilke N, Wang Y, Zhang Y, Wang C, Eijgelshoven MH, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AH (1996) Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model. MRI and 31 P-MRS study. Circulation 94:1089–1100PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Stefan Neubauer

There are no affiliations available

Personalised recommendations