Skip to main content

Magnetic resonance imaging of atherosclerosis: classical and molecular imaging

  • Chapter
Cardiovascular Magnetic Resonance

Abstract

Despite advances in both treatment and prevention, complications of atherosclerotic disease remain the leading cause of morbidity and mortality in the Western World. While atherosclerosis may slowly progress over years or decades, the occurrence of thrombosis as a consequence of sudden plaque rupture often leads to abrupt life threatening complications. Such acute events may explain why a large percentage (∼ 50%=250,000 in the US/year) of people dying from coronary artery disease die suddenly without manifestation of typical symptoms [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abela GS, Eisenberg JD, Mittleman MA, Nesto RW, Leeman D, Zarich S, Waxman S, Prieto AR, Manzo KS (1999) Detecting and differentiating white from red coronary thrombus by angiography in angina pectoris and in acute myocardial infarction. Am J Cardiol 83(l):94–97, A8

    Article  PubMed  CAS  Google Scholar 

  2. American Heart Association (2003) Heart and Stroke Statistical Update, Dallas Tx

    Google Scholar 

  3. Atalar E, Bottomley PA, Ocali O, Correia LC, Kelemen MD, Lima JA, Zerhouni EA (1996) High resolution intravascular MRI and MRS by using a catheter receiver coil. Magn Reson Med 36(4):596–605

    Article  PubMed  CAS  Google Scholar 

  4. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke (1996) The French Study of Aortic Plaques in Stroke Group. N Engl J Med 334:1216–1221

    Article  Google Scholar 

  5. Bornert P, Jensen D (1995) Coronary artery imaging at 0.5 T using segmented 3D echo planar imaging. Magn Reson Med 1995; 34(6):779–785

    Article  CAS  Google Scholar 

  6. Bornert P, Stuber M, Botnar RM, Kissinger KV, Koken P, Spuentrup E, Manning WJ (2001) Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography. Magn Reson Med 46(4):789–794

    Article  PubMed  CAS  Google Scholar 

  7. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102(21): 2582–2587

    Article  PubMed  CAS  Google Scholar 

  8. Botnar RM, Kim WY, Bornert P, Stuber M, Spuentrup E, Manning WJ (2001) 3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 46(5):848–854

    Article  PubMed  CAS  Google Scholar 

  9. Botnar RM, Stuber M, Kissinger KV, Manning WJ (2000) Free-breathing 3D coronary MRA: the impact of “isotropic” image resolution. J ll(4):389–393

    Google Scholar 

  10. Botnar RM, Buecker A, Kim WY, Viohl I, Guenther RW, Spuentrup E (2003) Initial Experiences with In-Vivo Intravascular Coronary Vessel Wall Imaging. J Magn Reson Imaging 17:615–619

    Article  PubMed  Google Scholar 

  11. Bremer C, Tung CH, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition PG-743-8. Nat Med 7(6)

    Google Scholar 

  12. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106(11):1368–1373

    Article  PubMed  Google Scholar 

  13. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, Bearman G, Wilierson JT (1996) Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347(9013):1447–1451

    Article  PubMed  CAS  Google Scholar 

  14. Cohen A, Tzourio C, Bertrand B, Chauvel C, Bousser MG, Amarenco P (1997) Aortic plaque morphology and vascular events: a follow-up study in patients with ischemic stroke. FAPS Investigators. French Study of Aortic Plaques in Stroke. Circulation 96(11):3838–3841

    Article  PubMed  CAS  Google Scholar 

  15. de Korte CL, Sierevogel MJ, Mastik F, Strijder C, Schaar JA, Velema E, Pasterkamp G, Serruys PW, van der Steen AF (2002) Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study. Circulation 105(14):1627–1630

    Article  PubMed  Google Scholar 

  16. Demos SM, Onyuksel H, Gilbert J, Roth SI, Kane B, Jungblut P, Pinto JV, McPherson DD, Klegerman ME (1997) In vitro targeting of antibody-conjugated echogenic liposomes for sitespecific ultrasonic image enhancement. J Pharm Sci 86(2):167–171

    Article  PubMed  CAS  Google Scholar 

  17. Di Mario C, The SH, Madretsma S, van Suylen RJ, Wilson RA, Bom N, Serruys PW, Gussenhoven EJ, Roelandt JR (1992) Detection and characterization of vascular lesions by intravascular ultrasound: an in vitro study correlated with histology. J Am Soc Echocardiogr 5(2):135–146

    PubMed  Google Scholar 

  18. Dougherty L, Connick TJ, Mizsei G (2001) Cardiac imaging at 4 Tesla. Magn Reson Med 45(1):176–178

    Article  PubMed  CAS  Google Scholar 

  19. Edelman RR, Chien D, Kim D (1991) Fast selective black blood MR imaging. Radiology 181(3):655–660

    PubMed  CAS  Google Scholar 

  20. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173(l):255–263

    PubMed  CAS  Google Scholar 

  21. Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M (2002) “Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48(4):658–666

    Article  PubMed  Google Scholar 

  22. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92(3):657–671

    Article  PubMed  CAS  Google Scholar 

  23. Fayad ZA, Fallon JT, Shinnar M, Wehrli S, Dansky HM, Poon M, Badimon JJ, Charlton SA, Fisher EA, Breslow JL, Fuster V (1998) Noninvasive In vivo high-resolution magnetic resonance Magnetic resonance imaging of atherosclerosis imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98(15):1541–1547

    Article  PubMed  CAS  Google Scholar 

  24. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, Aguinaldo JG, Badimon JJ, Sharma SK (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102(5):506–510

    Article  PubMed  CAS  Google Scholar 

  25. Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, Shinnar M, Chesebro JH, Fuster V (2000) In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 101(21):2503–2509

    Article  PubMed  CAS  Google Scholar 

  26. Feld S, Ganim M, Carell ES, Kjellgren O, Kirkeeide RL, Vaughn WK, Kelly R, McGhie Al, Kramer N, Loyd D, Anderson HV, Schroth G, Smalling RW (1996) Comparison of angioscopy, intravascular ultrasound imaging and quantitative coronary angiography in predicting clinical outcome after coronary intervention in high risk patients. J Am Coll Cardiol 28(1):97–105

    Article  PubMed  CAS  Google Scholar 

  27. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104(11):1280–1285

    Article  PubMed  CAS  Google Scholar 

  28. Fuster V, Lewis A (1994) Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90(4):2126–2146

    Article  PubMed  CAS  Google Scholar 

  29. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375

    Article  PubMed  CAS  Google Scholar 

  30. Hatsukami TS, Ross R, Polissar NL, Yuan C (2000) Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102(9):959–964

    Article  PubMed  CAS  Google Scholar 

  31. Hurst GC, Hua J, Duerk JL, Cohen AM (1992) Intravascular (catheter) NMR receiver probe: preliminary design analysis and application to canine iliofemoral imaging. Magn Reson Med 24(2):343–357

    Article  PubMed  CAS  Google Scholar 

  32. Jaffer FA, O’Donnell CJ, Larson MG, Chan SK, Kissinger KV, Kupka MJ, Salton C, Botnar RM, Levy D, Manning WJ (2002) Age and sex distribution of subclinical aortic atherosclerosis: a magnetic resonance imaging examination of the Framingham Heart Study. Arterioscler Thromb Vase Biol 22(5):849–854

    Article  CAS  Google Scholar 

  33. Johansson LO, Bjornerud A, Ahlstrom HK, Ladd DL, Fujii DK (2001) A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 13(4):615–618

    Article  PubMed  CAS  Google Scholar 

  34. Johnstone MT, Perez AS, Witte S, Laredo J, Graham PB, Quist WC, Weisskopf RM, Lauffer RB, Manning WJ, Botnar RM (2002) Direct thrombus visualization after plaque rupture using a novel fibrin-binding gadolinium based MR contrast agent. Circulation (Suppl):2162

    Google Scholar 

  35. Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM (2001) Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging 14(4):383–390

    Article  PubMed  CAS  Google Scholar 

  36. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ (2001) Coronary Magnetic Resonance Angiography for the Detection of Coronary Stenoses. N Engl J Med 345(26):1863–1869

    Article  PubMed  CAS  Google Scholar 

  37. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106(3):296–299

    Article  PubMed  Google Scholar 

  38. Kopp AF, Schroeder S, Baumbach A, Kuettner A, Georg C, Ohnesorge B, Heuschmid M, Kuzo R, Claussen CD (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11(9):1607–1611

    Article  PubMed  CAS  Google Scholar 

  39. Li D, Kaushikkar S, Haacke EM, Woodard PK, Dhawale PJ, Kroeker RM, Laub G, Kuginuki Y, Gutierrez FR (1996) Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology 201(3):857–863

    PubMed  CAS  Google Scholar 

  40. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  PubMed  CAS  Google Scholar 

  41. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78(5 Pt 1):1157–1166

    Article  PubMed  CAS  Google Scholar 

  42. Mahmood U, Tung CH, Tang Y, Weissleder R (2002) Feasibility of in vivo multichannel optical imaging of gene expression: experimental study in mice. Radiology 224(2):446–451

    Article  PubMed  Google Scholar 

  43. Martin AJ, Henkelman RM (1994) Intravascular MR imaging in a porcine animal model. Magn Reson Med 32(2):224–229

    Article  PubMed  CAS  Google Scholar 

  44. Maki JH, Wilson GJ, Lauffer RB, Weisskopf RM, Yuan C (2000) Vessel wall enhancement with MS-325 facilitates plaque detection and characterization. Circulation (Suppl):1832

    Google Scholar 

  45. Mettinger KL, Larsson S, Ericson K, Casseborn S (1978) Detection of atherosclerotic plaques in carotid arteries by the use of 1231-fibrinogen. Lancet 1(8058):242–244

    Article  PubMed  CAS  Google Scholar 

  46. Quick HH, Ladd ME, Zimmermann-Paul GG, Erhart P, Hofmann E, von Schulthess GK, Debatin JF (1999) Single-loop coil concepts for intravascular magnetic resonance imaging. Magn Reson Med 41(4):751–758

    Article  PubMed  CAS  Google Scholar 

  47. Rogers WJ, Prichard JW, Hu YL, Olson PR, Benckart DH, Kramer CM, Vido DA, Reichek N (2000) Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscler Thromb Vase Biol 20(7):1824–1830

    Article  CAS  Google Scholar 

  48. Ross R (1999) Atherosclerosis — an inflammatory disease. N Engl J Med 340(2):115–126

    Article  PubMed  CAS  Google Scholar 

  49. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103(3):415–422

    Article  PubMed  CAS  Google Scholar 

  50. Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington M, Harrington E, Fuster V (1999) The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vase Biol 19(11):2756–2761

    Article  CAS  Google Scholar 

  51. Singerman RW, Denison TJ, Wen H, Balaban RS (1997) Simulation of Bl field distribution and intrinsic signal-to-noise in cardiac MRI as a function of static magnetic field. J Magn Reson 125(l):72–83

    Article  PubMed  CAS  Google Scholar 

  52. Small DM (1988) George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis 8(2):103–129

    Article  PubMed  CAS  Google Scholar 

  53. Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212(2):579–587

    PubMed  CAS  Google Scholar 

  54. Stuber M, Botnar RM, Kissinger KV, Manning WJ (2001) Free-breathing black-blood coronary MR angiography: initial results. Radiology 219(l):278–283

    PubMed  CAS  Google Scholar 

  55. Stuber M, Botnar RM, Danias PG, Sodickson DK, Kissinger KV, Van Cauteren M, De Becker J, Manning WJ (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34(2):524–531

    Article  PubMed  CAS  Google Scholar 

  56. Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48(3):425–429

    Article  PubMed  Google Scholar 

  57. Taylor AM, Jhooti P, Wiesmann F, Keegan J, Firmin DN, Pennell DJ (1997) MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging 7(4):629–636

    Article  PubMed  CAS  Google Scholar 

  58. Toussaint JF, Southern JF, Fuster V, Kantor HL (1994) 13C-NMR spectroscopy of human atherosclerotic lesions. Relation between fatty acid saturation, cholesteryl ester content, and luminal obstruction. Arterioscler Thromb 14(12):1951–1957

    Article  PubMed  CAS  Google Scholar 

  59. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94(5):932–938

    Article  PubMed  CAS  Google Scholar 

  60. Trouard TP, Altbach MI, Hunter GC, Eskelson CD, Gmitro AF (1997) MRI and NMR spectroscopy of the lipids of atherosclerotic plaque in rabbits and humans. Magn Reson Med 38(1):19–26

    Article  PubMed  CAS  Google Scholar 

  61. Uehara A, Isaka Y, Hashikawa K, Kimura K, Kozuka T, Kamada T, Etani H, Yoneda S, Imaizumi M (1988) Iodine-131-labeled fibronectin: potential agent for imaging atherosclerotic lesion and thrombus. J Nucl Med 29(7):1264–1267

    PubMed  CAS  Google Scholar 

  62. Wang Y, Watts R, Bezenson J, Mitchell I, Ngyen T, Prince M (2000) Selecting the optimal period of diastole for eliminating cardiac motion in coronary MRA by the use of an ECG-triggered navigator echo technique. In: International Society for Magnetic Resonance in Medicine, Berkeley, California, USA, SMRM, 8th Annual Meeting, Denver, p. 1625

    Google Scholar 

  63. Wasserman BA, Smith WI, Trout HH, 3rd, Cannon RO, 3rd, Balaban RS, Arai AE (2002) Carotid artery atherosclerosis: in vivo morphologic characterization with gadolinium-enhanced double-oblique MR imaging initial results. Radiology 223(2):566–573

    Article  PubMed  Google Scholar 

  64. Wielopolski PA, van Geuns RJ, de Feyter PJ, Oudkerk M (1998) Breath-hold coronary MR angiography with volume-targeted imaging. Radiology 209(1):209–219

    PubMed  CAS  Google Scholar 

  65. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493

    PubMed  CAS  Google Scholar 

  66. Weissleder R (1999) Molecular imaging: exploring the next frontier. Radiology 212(3):609–614

    PubMed  CAS  Google Scholar 

  67. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9(1):123–128

    Article  PubMed  CAS  Google Scholar 

  68. Worthley SG, Helft G, Fuster V, Fayad ZA, Rodriguez OJ, Zaman AG, Fallon JT, Badimon JJ (2000) Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 101(25):2956–2961

    Article  PubMed  CAS  Google Scholar 

  69. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS (2002) Optical imaging of cardiac reporter gene expression in living rats. Circulation 105(14):1631–1634

    Article  PubMed  Google Scholar 

  70. Yu X, Song SK, Chen J, Scott MJ, Fuhrhop RJ, Hall CS, Gaffney PJ, Wickline SA, Lanza GM (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44(6):867–872

    Article  PubMed  CAS  Google Scholar 

  71. Yuan C, Petty C, O’Brien KD, Hatsukami TS, Eary JF, Brown BG (1997) In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids. Arterioscler Thromb Vase Biol 17(8):1496–1503

    Article  CAS  Google Scholar 

  72. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard D, Ortiz G, Small R, Davies JW, Kerwin WS, Hatsukami TS (2001) In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 104(17):2051–2056

    Article  PubMed  CAS  Google Scholar 

  73. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, Hatsukami TS (2002) Contrastenhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15(l):62–67

    Article  PubMed  Google Scholar 

  74. Yuan C, Zhang SX, Polissar NL, Echelard D, Ortiz G, Davis JW, Ellington E, Ferguson MS, Hatsukami TS (2002) Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke. Circulation 105(2):181–185

    Article  PubMed  Google Scholar 

  75. Yuan C, Skinner MP, Kaneko E, Mitsumori LM, Hayes CE, Raines EW, Nelson JA, Ross R (1996) Magnetic resonance imaging to study lesions of atherosclerosis in the hyperlipidemic rabbit aorta. Magn Reson Imaging 14(1):93–102

    Article  PubMed  CAS  Google Scholar 

  76. Zimmermann-Paul GG, Quick HH, Vogt P, von Schulthess GK, Kling D, Debatin JF (1999) High-resolution intravascular magnetic resonance imaging: monitoring of plaque formation in heritable hyperlipidemic rabbits. Circulation 99(8):1054–1061

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Botnar, R.M. et al. (2004). Magnetic resonance imaging of atherosclerosis: classical and molecular imaging. In: Nagel, E., van Rossum, A.C., Fleck, E. (eds) Cardiovascular Magnetic Resonance. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-7985-1932-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1932-9_24

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-62152-9

  • Online ISBN: 978-3-7985-1932-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics