Flow measurements

  • Christoph Klein


Phase-contrast magnetic resonance imaging offers the opportunity of obtaining quantitative information on blood flow volume and velocity. The technical aspects are described in detail in Chapters 4 and 5. The information from the phase-contrast measurements is processed into two sets of images. The magnitude image resembles a bright blood image that is used for anatomical orientation. In the velocity image (phase-contrast), the gray value of each pixel represents the velocity information in that voxel. White values show flow away from the viewer, whereas black values show flow towards the viewer (Fig. 22.1). The values (white or black) are proportional to the flow velocity. Grey values represent stationary spins and can be used, e.g., in the skeletal muscle as an indication of noise. Phase information of air is arbitrary and is therefore not suitable for background subtraction or estimation of noise.


Right Coronary Artery Encode Image Diastolic Heart Failure Pulmonary Trunk Blood Flow Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103:2476–482PubMedCrossRefGoogle Scholar
  2. 2.
    Bogren HG, Klipstein RH, Mohiaddin RH, Firmin DN, Underwood SR, Rees RS, Longmore DB (1989) Pulmonary artery distensibility and blood flow patterns: a magnetic resonance study of normal subjects and of patients with pulmonary arterial hypertension. Am Heart J 118:990–999PubMedCrossRefGoogle Scholar
  3. 3.
    Bogren HG, Mohiaddin RH, Kilner PJ, Jimenez-Borreguero LJ, Yang GZ, Firmin DN (1997) Blood flow patterns in the thoracic aorta studied with three-directional MR velocity mapping: the effects of age and coronary artery disease. J Magn Reson Imaging 7:784–793PubMedCrossRefGoogle Scholar
  4. 4.
    Bogren HG, Underwood SR, Firmin DN, Mohiaddin RH, Klipstein RH, Rees RS, Longmore DB (1988) Magnetic resonance velocity mapping in aortic dissection. Br J Radiol 61:456–462PubMedCrossRefGoogle Scholar
  5. 5.
    Brenner LD, Caputo GR, Mostbeck G, Steiman D, Dulce M, Cheitlin MD, O’Sullivan M, Higgins CB (1992) Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 20:1246–1250PubMedCrossRefGoogle Scholar
  6. 6.
    Caputo GR, Kondo C, Masui T, Geraci SJ, Foster E, O’Sullivan MM, Higgins CB (1991) Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology 180:693–698PubMedGoogle Scholar
  7. 7.
    Chang JM, Friese K, Caputo GR, Kondo C, Higgins CB (1991) MR measurement of blood flow in the true and false channel in chronic aortic dissection. J Comput Assist Tomogr 15:418–423PubMedCrossRefGoogle Scholar
  8. 8.
    Doerr G, Wellnhofer E, Langreck H, Grebe O, Schwab J, Paetsch I, Schnackenburg B, Bornstedt A, Nagel E, Fleck E (2001) Value of flow velocity measurement in contrast enhanced magnetic resonance angiography to improve the quantification of stenosis. SCMR Fourth Annual Scientific Sessions. Poster Presentation ID 20422Google Scholar
  9. 9.
    Evans AJ, Iwai F, Grist TA, Sostman HD, Hedlund LW, Spritzer CE, Negro-Vilar R, Beam CA, Pelc NJ (1993) Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation. Invest Radiol 28:109–115PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrigno M, Hickey DD, Liner MH, Lundgren CE (1986) Cardiac performance in humans during breathholding. J Appl Physiol 60:1871–1877PubMedGoogle Scholar
  11. 11.
    Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 93:660–666PubMedCrossRefGoogle Scholar
  12. 12.
    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94PubMedCrossRefGoogle Scholar
  13. 13.
    Hamilton CA, Moran PR, Santago P, 2nd, Rajala SA (1994) Effects of intravoxel velocity distributions on the accuracy of the phase-mapping method in phase-contrast MR angiography. J Magn Reson Imaging 4:752–755PubMedCrossRefGoogle Scholar
  14. 14.
    Hartiala JJ, Foster E, Fujita N, Mostbeck GH, Caputo GR, Fazio GP, Winslow T, Higgins CB (1994) Evaluation of left atrial contribution to left ventricular filling in aortic stenosis by velocity-encoded cine MRI. Am Heart J 127:593–600PubMedCrossRefGoogle Scholar
  15. 15.
    Hartiala JJ, Mostbeck GH, Foster E, Fujita N, Dulce MC, Chazouilleres AF, Higgins CB (1993) Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function: measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am Heart J 125:1054–1066PubMedCrossRefGoogle Scholar
  16. 16.
    Heidenreich PA, Steffens J, Fujita N, O’Sullivan M, Caputo GR, Foster E, Higgins CB (1995) Evaluation of mitral stenosis with velocity-en-coded cine-magnetic resonance imaging. Am J Cardiol 75:365–369PubMedCrossRefGoogle Scholar
  17. 17.
    Henk CB, Schlechta B, Grampp S, Gomischek G, Klepetko W, Mostbeck GH (1998) Pulmonary and aortic blood flow measurements in normal subjects and patients after single lung trans-plantation at 0.5 T using velocity encoded cine MRI. Chest 114:771–779PubMedCrossRefGoogle Scholar
  18. 18.
    Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lötz J (2001) Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 120:502–507PubMedCrossRefGoogle Scholar
  19. 19.
    Hofman MB, Visser FC, van Rossum AC, Vink QM, Sprenger M, Westerhof N (1995) In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 33:778–784PubMedCrossRefGoogle Scholar
  20. 20.
    Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576PubMedCrossRefGoogle Scholar
  21. 21.
    Hoogendoorn LI, Pattynama PM, Buis B, van der Geest RJ, van der Wall EE, de Roos A (1995) Noninvasive evaluation of aortocoronary bypass grafts with magnetic resonance flow mapping. Am J Cardiol 75:845–848PubMedCrossRefGoogle Scholar
  22. 22.
    Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA, Applegate RJ, Thomas MS, Payne J, Link KM, Peshock RM (1999) Visualization and functional assessment of proximal and middle left anterior descending coronary stenoses in humans with magnetic resonance imaging. Circulation 99:3248–3254PubMedCrossRefGoogle Scholar
  23. 23.
    Hundley WG, Hillis LD, Hamilton CA, Applegate RJ, Herrington DM, Clarke GD, Braden GA, Thomas MS, Lange RA, Peshock RM, Link KM (2000) Assessment of coronary arterial restenosis with phase-contrast magnetic resonance imaging measurements of coronary flow reserve. Circulation 101:2375–2381PubMedCrossRefGoogle Scholar
  24. 24.
    Hundley WG, Li HF, Lange RA, Pfeifer DP, Meshack BM, Willard JE, Landau C, Willett D, Hillis LD, Peshock RM (1995) Assessment of leftto-right intracardiac shunting by velocity-en-coded, phase-difference magnetic resonance imaging. A comparison with oximetric and in dicator dilution techniques. Circulation 91:2955–2960PubMedCrossRefGoogle Scholar
  25. 25.
    Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kühl DE (1990) Nonin-vasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15:1032–1042PubMedCrossRefGoogle Scholar
  26. 26.
    Kalden P, Kreitner KF, Wittlinger T, Voigtlander T, Krummenauer F, Schreiber W, Thelen M (1999) (The assessment of the patency of coronary bypass vessels with a 2D T2-weighted turbo-spin-echo sequence (HASTE) in the breath-hold technic). Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 170:442–448PubMedCrossRefGoogle Scholar
  27. 27.
    Kawada N, Sakuma H, Yamakado T, Takeda K, Isaka N, Nakano T, Higgins CB (1999) Hyper-trophic cardiomyopathy: MR measurement of coronary blood flow and vasodilator flow reserve in patients and healthy subjects. Radiology 211:129–135PubMedGoogle Scholar
  28. 28.
    Klein C, Schalla S, Schnackenburg B, Bornstedt A, Fleck N, Nagel E (2001) Magnetic resonance flow measurements in real time: Comparison with a standard gradient-echo technique. J Magn Reson Imaging 14:306–310PubMedCrossRefGoogle Scholar
  29. 29.
    Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB (1991) Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. Am J Roentgenol 157:9–16CrossRefGoogle Scholar
  30. 30.
    Koskenvuo JW, Sakuma H, Niemi P, Toikka JO, Knuuti J, Laine H, Komu M, Kormano M, Saraste M, Hartiala JJ (2001) Global myocardial blood flow and global flow reserve measurements by MRI and PET are comparable. J Magn Reson Imaging 13:361–366PubMedCrossRefGoogle Scholar
  31. 31.
    Langerak SE, Kunz P, Vliegen HW, Lamb HJ, Jukema JW, van Der Wall EE, de Roos A (2001) Improved MR flow mapping in coronary artery bypass grafts during adenosine-induced stress. Radiology 218:540–547PubMedGoogle Scholar
  32. 32.
    Langerak SE, Vliegen HW, Jukema JW, Kunz P, Zwinderman AH, Lamb HJ, van der Wall EE, de Roos A (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1518PubMedCrossRefGoogle Scholar
  33. 33.
    Lee VS, Spritzer CE, Carroll BA, Pool LG, Bernstein MA, Heinle SK, MacFall JR (1997) Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation. AJR Am J Roentgenol 169:1125–1131PubMedCrossRefGoogle Scholar
  34. 34.
    Lethimonnier F, Bouligand B, Thouveny F, Furber A, Jallet P, Caron-Poitreau C, Le Jeune JJ (1999) Error assessment due to coronary stents in flow-encoded phase contrast MR angiography: a phantom study. J Magn Reson Imaging 10:899–902PubMedCrossRefGoogle Scholar
  35. 35.
    Lund GK, Watzinger N, Saeed M, Reddy GP, Yang M, Araoz PA, Curatola D, Bedigian M, Higgins CB (2003) Chronic Heart Failure: Global Left Ventricular Perfusion and Coronary Flow Reserve with Velocity-encoded Cine MR Imaging: Initial Results. Radiology 227:209–215PubMedCrossRefGoogle Scholar
  36. 36.
    Lund GK, Wendland MF, Shimakawa A, Arheden H, Stahlberg F, Higgins CB, Saeed M (2000) Coronary sinus flow measurement by means of velocity-encoded cine MR imaging: validation by using flow probes in dogs. Radiology 217:487–493PubMedGoogle Scholar
  37. 37.
    Marcus JT, Smeenk HG, Kuijer JP, Van der Geest RJ, Heethaar RM, Van Rossum AC (1999) Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and inplane motion of the heart. J Comput Assist Tomogr 23:567–576PubMedCrossRefGoogle Scholar
  38. 38.
    Mohiaddin RH, Amanuma M, Kilner PJ, Pennell DJ, Manzara C, Longmore DB (1991) MR phaseshift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr 15:237–243PubMedCrossRefGoogle Scholar
  39. 39.
    Mohiaddin RH, Firmin DN, Longmore DB (1993) Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol 74:492–497PubMedGoogle Scholar
  40. 40.
    Mostbeck GH, Hartiala JJ, Foster E, Fujita N, Dulce MC, Higgins CB (1993) Right ventricular diastolic filling: evaluation with velocity-en-coded cine MRI. J Comput Assist Tomogr 17:245–252PubMedCrossRefGoogle Scholar
  41. 41.
    Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, Fleck E (1999) Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 41: 544–549PubMedCrossRefGoogle Scholar
  42. 42.
    Nagel E, Hug J, Bunger S, Bornstedt A, Schnackenburg B, Wellnhofer E, Klein C, Thouet T, Schalla S, Fleck E (1998) Coronary flow measurements for evaluation of patients after stent implantation. Magma 6:184–185PubMedGoogle Scholar
  43. 43.
    Nagel E, Thouet T, Klein C, Schalla S, Bornstedt A, Schnackenburg B, Hug J, Wellnhofer E, Fleck E (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 24:24Google Scholar
  44. 44.
    Sakuma H, Blake LM, Amidon TM, O’Sullivan M, Szolar DH, Furber AP, Bernstein MA, Foo TK, Higgins CB (1996) Coronary flow reserve: noninvasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radiology 198:745–750PubMedGoogle Scholar
  45. 45.
    Sakuma H, Kawada N, Kubo H, Nishide Y, Takano K, Kato N, Takeda K (2001) Effect of breath-holding on blood flow measurement using fast velocity encoded cine MRI. Magn Reson Med 45:346–348PubMedCrossRefGoogle Scholar
  46. 46.
    Sakuma H, Koskenvuo JW, Niemi P, Kawada N, Toikka JO, Knuuti J, Laine H, Saraste M, Kormano M, Hartiala JJ (2000) Assessment of coronary flow reserve using fast velocity-encoded cine MR imaging: validation study using positron emission tomography. Am J Roentgenol 175:1029–1033CrossRefGoogle Scholar
  47. 47.
    Sakuma H, Saeed M, Takeda K, Wendland MF, Schwitter J, Szolar DH, Derugin N, Shimakawa A, Foo TK, Higgins CB (1997) Quantification of coronary artery volume flow rate using fast velocity-encoded cine MR imaging. Am J Roentgenol 168:1363–1367CrossRefGoogle Scholar
  48. 48.
    Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, Hawighorst H, Schad L, van Kaick G (1997) Renal artery stenosis: grading of hemodynamic changes with cine phasecontrast MR blood flow measurements. Radiology 203:45–53PubMedGoogle Scholar
  49. 49.
    Schwitter J, DeMarco T, Kneifel S, von Schulthess GK, Jorg MC, Arheden H, Ruhm S, Stumpe K, Buck A, Parmley WW, Luscher TF, Higgins CB (2000) Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation 101:2696–2702PubMedCrossRefGoogle Scholar
  50. 50.
    Shibata M, Sakuma H, Isaka N, Takeda K, Higgins CB, Nakano T (1999) Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guide wire. J Magn Reson Imaging 10:563–568PubMedCrossRefGoogle Scholar
  51. 51.
    Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 3:377–385PubMedCrossRefGoogle Scholar
  52. 52.
    Taxon M (1995) Hemodynamic basis of atherosclerosis with critique of the cholesterol-heart disease hypothesis. Wallingford UK, Begel House, pp 48–49Google Scholar
  53. 53.
    van Rossum AC, Visser FC, Hofman MB, Galjee MA, Westerhof N, Valk J (1992) Global left ventricular perfusion: noninvasive measurement with cine MR imaging and phase velocity mapping of coronary venous outflow. Radiology 182:685–691PubMedGoogle Scholar
  54. 54.
    Vogel RA (1988) Assessing stenosis significance by coronary arteriography: are the best variables good enough? J Am Coll Cardiol 12:692–693PubMedCrossRefGoogle Scholar
  55. 55.
    Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O (1997) Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. Am J Roentgenol 168:1073–1080CrossRefGoogle Scholar
  56. 56.
    White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824PubMedCrossRefGoogle Scholar
  57. 57.
    Wolf RL, King BF, Torres VE, Wilson DM, Ehman RL (1993) Measurement of normal renal artery blood flow: cine phase-contrast MR imaging vs clearance of p-aminohippurate. Am J Roentgenol 161:995–1002CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christoph Klein

There are no affiliations available

Personalised recommendations