Myocardial infarction and viability

  • Christoph Klein
  • Aernout M. Beek


The evaluation of dysfunctional, but viable myocardium — and therefore the ability to improve contractile performance with revascularization — in patients with acute or chronic infarction is important for the assessment of the prognosis of the patient and for the planning of further therapeutic strategies. Although the improvement of contractile function at rest after restoration of myocardial blood flow is considered the reference standard for the diagnosis of viability, other points need mentioning. The inner layer of the myocardium contributes most to systolic thickening at rest. Therefore, if the endocardium is necrosed, resting wall motion is unlikely to recover. However, the middle and outer layers of the myocardium contribute more to systolic thickening during stress and, thus, may improve regional and global left ventricular performance during exercise. In addition, a viable rim may contribute to a favorable remodeling process and electrical stability.


Myocardial Blood Flow Normal Myocardium Grey Arrow Chronic Infarcted Myocardium Extracellular Contrast Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39:1151–1158Google Scholar
  2. 2.
    Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H, Erdmann E (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31:1040–1048PubMedCrossRefGoogle Scholar
  3. 3.
    Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91:1006–1015PubMedCrossRefGoogle Scholar
  4. 4.
    Baumgartner H, Porenta G, Lau YK, Wutte M, Klaar U, Mehrabi M, Siegel RJ, Czernin J, Laufer G, Sochor H, Schelbert H, Fishbein MC, Maurer G (1998) Assessment of myocardial viability by dobutamine echocardiography, positron emission tomography and thallium-201 SPECT: correlation with histopathology in explanted hearts. J Am Coll Cardiol 32:1701–1708PubMedCrossRefGoogle Scholar
  5. 5.
    Bax JJ, Wijns W, Cornel JH, Visser FC, Boersma E, Fioretti PM (1997) Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 30:1451–1460PubMedCrossRefGoogle Scholar
  6. 6.
    Beek AM, Kuhl HP, Bondarenko O et al. (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42:895–901PubMedCrossRefGoogle Scholar
  7. 7.
    Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM (2001) Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 104:1101–1107PubMedCrossRefGoogle Scholar
  8. 8.
    Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, Bonow RO, Judd RM, Kim RJ (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164PubMedCrossRefGoogle Scholar
  9. 9.
    Dendale PA, Franken PR, Waldman GJ et al. (1995) Low-dosage dobutamine magnetic resonance imaging as an alternative to echocardiography in the detection of viable myocardium after acute infarction. Am Heart J 130:134–140PubMedCrossRefGoogle Scholar
  10. 10.
    Dubnow MH, Burchell HB, Titus JL (1965) Post-infarction ventricular aneurysm. A clinicomorphologic and electrocardiographic study of 80 cases. Am Heart J 70:753–760PubMedCrossRefGoogle Scholar
  11. 11.
    Eichstaedt HW, Felix R, Dougherty FC, Langer M, Rutsch W, Schmutzler H (1986) Magnetic resonance imaging (MRI) in different stages of myocardial infarction using the contrast agent gadolinium-DTPA. Clinical Cardiology. Clin Cardiol 9:527–535PubMedCrossRefGoogle Scholar
  12. 12.
    Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106:1083–1089PubMedCrossRefGoogle Scholar
  13. 13.
    Gerber BL, Rochitte CE, Bluemke DA et al. (2001) Relation between Gd-DTPA contrast enhancement and regional inotropic response in the periphery and center of myocardial infarction. Circulation 104:998–1001PubMedCrossRefGoogle Scholar
  14. 14.
    Gunning MG, Anagnostopoulos C, Knight CJ, Pepper J, Burman ED, Davies G, Fox KM, Pennell DJ, Ell PJ, Underwood SR (1998) Comparison of 201T1, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 98: 1869–1874PubMedCrossRefGoogle Scholar
  15. 15.
    Gunning MG, Kaprielian RR, Pepper J, Pennell DJ, Sheppard MN, Severs NJ, Fox KM, Underwood SR (2002) The histology of viable and hibernating myocardium in relation to imaging characteristics. J Am Coll Cardiol 39:428–435PubMedCrossRefGoogle Scholar
  16. 16.
    Judd RM, Lugo-Olivieri CH, Arai M et al. (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910PubMedCrossRefGoogle Scholar
  17. 17.
    Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326PubMedCrossRefGoogle Scholar
  18. 18.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002PubMedCrossRefGoogle Scholar
  19. 19.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic reso-nance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  20. 20.
    Klein C, Graf K, Fleck E, Nagel E (2003) Images in cardiovascular medicine. Acute fibrinous pericarditis assessed with magnetic resonance imaging. Circulation 107:e82CrossRefGoogle Scholar
  21. 20a.
    Klein C, Nekolla SG, Bahlbach T, Schnackenburg B, Nagel E, Fleck E, Schwaiger M (2004) The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging (in press)Google Scholar
  22. 21.
    Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167PubMedCrossRefGoogle Scholar
  23. 22.
    Kramer CM, Rogers WJ Jr, Pakstis DL (2000) Absence of adverse outcomes after magnetic resonance imaging early after stent placement for acute myocardial infarction: a preliminary study. J Cardiovasc Magn Reson 2:257–261PubMedCrossRefGoogle Scholar
  24. 23.
    Kuhl HP, Beek AM, van der Weerdt AP, Hofman MB, Visser CA, Lammertsma AA, Heussen N, Visser FC, van Rossum AC (2003) Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 41:1341–1348PubMedCrossRefGoogle Scholar
  25. 24.
    Lawson MA, Johnson LL, Coghlan L, Alami M, Tauxe EL, Reinert SE, Singleton R, Pohost GM (1997) Correlation of thallium uptake with left ventricular wall thickness by cine magnetic resonance imaging in patients with acute and healed myocardial infarcts. Am J Cardiol 80: 434–441PubMedCrossRefGoogle Scholar
  26. 25.
    Lee KS, Marwick TH, Cook SA et al. (1994) Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 90:2687–2694PubMedCrossRefGoogle Scholar
  27. 26.
    Lim TH, Hong MK, Lee JS et al. (1997) Novel application of breath-hold turbo spin-echo T2 MRI for detection of acute myocardial infarction. J Magn Reson Imaging 7:996–1001PubMedCrossRefGoogle Scholar
  28. 27.
    Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 92:1117–1125PubMedCrossRefGoogle Scholar
  29. 28.
    Lotan CS, Bouchard A, Cranney GB, Bishop SP, Pohost GM (1992) Assessment of postreperfusion myocardial hemorrhage using proton NMR imaging at 1.5 T. Circulation 86:1018–1025PubMedCrossRefGoogle Scholar
  30. 29.
    Mahrholdt H, Wagner A, Holly TA, Elliott MD, Bonow RO, Kim RJ, Judd RM (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327PubMedCrossRefGoogle Scholar
  31. 30.
    Nagel E, Lehmkuhl HB, Klein C, Schneider U, Frantz E, Ellmer A, Bocksch W, Dreysse S, Fleck E (1999) Influence of image quality on the diagnostic accuracy of dobutamine stress magnetic resonance imaging in comparison with dobutamine stress echocardiography for the noninvasive detection of myocardial ischemia. Z Kardiol 88:622–630PubMedCrossRefGoogle Scholar
  32. 31.
    Pagano D, Bonser RS, Townend JN, Ordoubadi F, Lorenzoni R, Camici PG (1998) Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure. Heart 79:281–288PubMedGoogle Scholar
  33. 32.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Frank JA, Bonow RO (1992) Regional left ventricular wall thickening. Relation to regional uptake of 18fluorodeoxyglucose and 201T1 in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 86:1125–1137PubMedCrossRefGoogle Scholar
  34. 33.
    Perrone-Filardi P, Bacharach SL, Dilsizian V, Maurea S, Marin-Neto JA, Arrighi JA, Frank JA, Bonow RO (1992) Metabolic evidence of viable myocardium in regions with reduced wall thickness and absent wall thickening in patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 20:161–168PubMedCrossRefGoogle Scholar
  35. 34.
    Rahimtoola SH (1995) From coronary artery disease to heart failure: role of the hibernating myocardium. Am J Cardiol 75:16E–22EPubMedCrossRefGoogle Scholar
  36. 35.
    Ramani K, Judd RM, Holly TA, Parrish TB, Rigolin VH, Parker MA, Callahan C, Fitzgerald SW, Bonow RO, Klocke FJ (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694PubMedCrossRefGoogle Scholar
  37. 36.
    Reffelmann T, Kloner RA (2002) The “no-re-flow” phenomenon: basic science and clinical correlates. Heart 87:162–168PubMedCrossRefGoogle Scholar
  38. 37.
    Ricciardi MJ, Wu E, Davidson CJ et al. (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103:2780–2783PubMedCrossRefGoogle Scholar
  39. 38.
    Sandstede JJ, Bertsch G, Beer M, Kenn W, Werner E, Pabst T, Lipke C, Kretschmer S, Neubauer S, Hahn D (1999) Detection of myocardial viability by low-dose dobutamine Cine MR imaging. Magn Reson Imaging 17:1437–1443PubMedCrossRefGoogle Scholar
  40. 39.
    Sicari R, Picano E, Landi P et al. (1997) Prognostic value of dobutamine-atropine stress echocardiography early after acute myocardial infarction. Echo Dobutamine International Co-operative (EDIC) Study. J Am Coll Cardiol 29: 254–260PubMedCrossRefGoogle Scholar
  41. 40.
    Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57PubMedGoogle Scholar
  42. 41.
    Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An Improved MR Imaging Technique for the Visualization of Myocardial Infarction. Radiology 218:215–223PubMedGoogle Scholar
  43. 42.
    Stork A, Lund GK, Bansmann M et al. (2003) Comparison of an edema-sensitive HASTE-TIRM sequence with delayed contrast enhancement in acute myocardial infarcts. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175:194–198PubMedCrossRefGoogle Scholar
  44. 43.
    Thompson RC, Liu P, Brady TJ, Okada RD, Johnston DL (1991) Serial magnetic resonance imaging in patients following acute myocardial infarction [see comments]. Magn Reson Imaging 9:155–158PubMedCrossRefGoogle Scholar
  45. 44.
    Trent RJ, Waiter GD, Hillis GS, McKiddie FI, Redpath TW, Walton S (2000) Dobutamine magnetic resonance imaging as a predictor of myocardial functional recovery after revascularisation. Heart 83:40–46PubMedCrossRefGoogle Scholar
  46. 45.
    Vanoverscheide JL, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA (1993) Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation 87:1513–1523CrossRefGoogle Scholar
  47. 46.
    Veen G, Meyer, A, Verheugt FW et al. (1993) Culprit lesion morphology and stenosis severity in the prediction of reocclusion after coronary thrombolysis: angiographic results of the APRI-COTstudy. Antithrombotics in the Prevention of Reocclusion in Coronary Thrombolysis. J Am Coll Cardiol 22:1755–1762PubMedCrossRefGoogle Scholar
  48. 47.
    Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379PubMedCrossRefGoogle Scholar
  49. 48.
    Wellnhofer E, Olariu A, Klein C, Gräfe M, Wahl A, Fleck E, Nagel E (2004) Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Circulation 109:2172–2174PubMedCrossRefGoogle Scholar
  50. 49.
    Wu E, Judd RM, Vargas JD, Klocke FJ, Bonow RO, Kim RJ (2001) Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28PubMedCrossRefGoogle Scholar
  51. 50.
    Wu KC, Zerhouni EA, Judd RM et al. (1998) Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulalation 97:762–772Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christoph Klein
  • Aernout M. Beek

There are no affiliations available

Personalised recommendations