Advertisement

Absolute quantification of myocardial perfusion with magnetic resonance first-pass imaging

  • Olaf M. Mühling
  • Michael Jerosch-Herold
  • Norbert M. Wilke

Abstract

The correlation between the angiographically determined grade of a coronary stenosis and its functional severity is often poor [39]. A better test for the significance of a coronary lesion is the invasive measurement of coronary flow reserve (CFR) [40]. CFR can be determined by using an intracoronary Doppler-flow wire and quantifying the ratio of maximal achievable coronary flow under pharmacological vasodilation and baseline flow [12, 45]. Assessment of the flow reserve is necessary because baseline coronary flow remains constant for moderate to severe grades of stenosis due to partial consumption of the flow reserve at rest. Thus, assessing coronary resting flow is insufficient to determine the functional severity of a coronary stenosis. However, maximal achievable coronary flow and therefore coronary flow reserve are already decreased with a mild to moderate stenosis of approximately 40% [36]. Fig. 20.1 demonstrates the principal of assessing flow with increasing grade of coronary stenosis.

Keywords

Coronary Flow Reserve Coronary Stenosis Mean Transit Time Fermi Function Signal Intensity Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al Saadi N, Nagel E, Gross M et al (2000) Noninvasive detection of myocardial ischemia from-perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383PubMedCrossRefGoogle Scholar
  2. 2.
    Al Saadi N, Nagel E, Gross M et al (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 36:1557–1564PubMedCrossRefGoogle Scholar
  3. 3.
    Bassingthwaighte JB, Goresky CA (1984) Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michael CC (eds) Handbook of Physiology — The Cardiovascular System. Bethesda, MD, pp 549–626Google Scholar
  4. 4.
    Betriu A, Castaner A, Sanz GA et al (1982) Angiographic findings 1 month after myocardial infarction: a prospective study of 259 survivors. Circulation 65:1099–1105PubMedCrossRefGoogle Scholar
  5. 5.
    Blardi P, Laghi PF, Urso R et al (1993) Pharmacokinetics of exogenous adenosine in man after infusion. Eur J Clin Pharmacol 44:505–507PubMedCrossRefGoogle Scholar
  6. 6.
    Burstein D, Taratuta E, Manning WJ (1991) Factors in myocardial „perfusion“ imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med 20:299–305PubMedCrossRefGoogle Scholar
  7. 7.
    Califf RM (1995) Restenosis: the cost to society. Am Heart J 130:680–684PubMedCrossRefGoogle Scholar
  8. 8.
    Carlsen J, Toft JC, Mortensen SA et al (2000) Myocardial perfusion scintigraphy as a screening method for significant coronary artery stenosis in cardiac transplant recipients. J Heart Lung Transplant 19:873–878PubMedCrossRefGoogle Scholar
  9. 9.
    Cerqueira MD, Verani MS, Schwaiger M et al (1994) Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol 23:384–389PubMedCrossRefGoogle Scholar
  10. 10.
    de Roos A, Matheijssen NA, Doornbos J et al (1990) Myocardial infarct size after reperfusion therapy: assessment with Gd-DTPA-enhanced MR imaging. Radiology 176:517–521PubMedGoogle Scholar
  11. 11.
    Gallagher KP, Osakada G, Matsuzaki M et al (1982) Myocardial blood flow and function with critical coronary stenosis in exercising dogs. Am J Physiol 243:H698–H707PubMedGoogle Scholar
  12. 12.
    Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94PubMedCrossRefGoogle Scholar
  13. 13.
    Ibrahim T, Nekolla SG, Schreiber K et al (2002) Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 39:864–870PubMedCrossRefGoogle Scholar
  14. 14.
    Jerosch-Herold M, Wilke N, Rodenwaldt J et al (1999) MRI measurements of perfusion reserve in collateral-dependent myocardium of pigs. Circulation 100:1–225CrossRefGoogle Scholar
  15. 15.
    Jerosch-Herold M, Swingen C, Seethamraju RT (2002) Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 29:886–897PubMedCrossRefGoogle Scholar
  16. 16.
    Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84PubMedCrossRefGoogle Scholar
  17. 17.
    Jerosch-Herold M, Wilke N, Wang Y et al (1999) Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging 15:453–464PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson TH, McDonald K, Nakhleh R et al (1991) Allograft vasculopathy and death in a cardiac transplant patient with angiographically Absolute quantification of myocardial perfusion with magnetic resonance first-pass imaging normal coronary arteries. Cathet Cardiovasc Diagn 24:37–40PubMedCrossRefGoogle Scholar
  19. 19.
    Keijer JT, Van Rossum AC, Wilke N et al (2000) Magnetic resonance imaging of myocardial perfusion in single-vessel coronary artery disease: implications for transmural assessment of myocardial perfusion. J Cardiovasc Magn Reson 2:189–200PubMedCrossRefGoogle Scholar
  20. 20.
    Klocke FJ (1976) Coronary blood flow in man. Prog Cardiovasc Dis 19:117–166PubMedCrossRefGoogle Scholar
  21. 21.
    Koenig SH, Spiller M, Brown RD III et al (1986) Relaxation of water protons in the intra-and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 3:791–795PubMedCrossRefGoogle Scholar
  22. 22.
    Kraitchman DL, Wilke N, Hexeberg E et al (1996) Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med 35:771–780PubMedCrossRefGoogle Scholar
  23. 23.
    Kroll K, Wilke N, Jerosch-Herold M et al (1996) Modeling regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol 271:H1643–H1655PubMedGoogle Scholar
  24. 24.
    Lauerma K, Virtanen KS, Sipila LM et al (1997) Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 96:2859–2867PubMedCrossRefGoogle Scholar
  25. 24a.
    Mühling O, Jerosch-Herold M, Näbauer M, Wilke N (2003) Assessment of Ischemic Heart Disease Using. Magnetic Resonance First-Pass Perfusion Imaging. Herz 28:82–89PubMedCrossRefGoogle Scholar
  26. 25.
    Muehling O, Panse P, Zenovich A et al (2001) Detection of a decreased endo-/epicardial perfusion in the transplanted human heart with cardiac MRI. Circulation 104:3625Google Scholar
  27. 26.
    Muehling O, Wang Y, Panse P et al (2002) Transmyocardial laser revascularization preserves regional myocardial perfusion: an MRI first pass perfusion study. Cardiovasc Res 57: 63–70CrossRefGoogle Scholar
  28. 27.
    O’Keefe DD, Hoffman JI, Cheitlin R et al (1978) Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 43:43–51PubMedCrossRefGoogle Scholar
  29. 28.
    Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346: 1948–1953PubMedCrossRefGoogle Scholar
  30. 29.
    Rechavia E, Galassi AR, Araujo LI et al (1992) The significance of a dipyridamole induced 99mTc-MIBI perfusion abnormality on single photon emission tomography: a quantitative validation with labelled water and positron emission tomography. Eur J Nucl Med 19:1044–1049PubMedCrossRefGoogle Scholar
  31. 30.
    Schwaiger M, Muzik O (1991) Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 67:35D–43DPubMedCrossRefGoogle Scholar
  32. 31.
    Schwitter J, Nanz D, Kneifel S et al (2001) Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103:2230–2235PubMedCrossRefGoogle Scholar
  33. 32.
    Shelton ME, Senneff MJ, Ludbrook PA et al (1993) Concordance of nutritive myocardial perfusion reserve and flow velocity reserve in conductance vessels in patients with chest pain with angiographically normal coronary arteries. J Nucl Med 34:717–722PubMedGoogle Scholar
  34. 33.
    Stewart RE (1994) The role of noninvasive cardiac imaging in the evaluation of the postcoronary intervention patient. J Interv Cardiol 7: 213–219PubMedCrossRefGoogle Scholar
  35. 34.
    Thompson HK (1964) Indicator transit time considered as a gamma variate. Circ Res 14: 502–515PubMedCrossRefGoogle Scholar
  36. 35.
    Tsekos NV, Zhang Y, Merkle H et al (1995) Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization preparation. Magn Reson Med 34:530–536PubMedCrossRefGoogle Scholar
  37. 36.
    Uren NG, Melin JA, De Bruyne B et al (1994) Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med 330:1782–1788PubMedCrossRefGoogle Scholar
  38. 37.
    Verberne HJ, Piek JJ, van Liebergen RA et al (1999) Functional assessment of coronary artery stenosis by doppler derived absolute and relative coronary blood flow velocity reserve in comparison with (99m)Tc MIBI SPECT. Heart 82:509–514PubMedGoogle Scholar
  39. 38.
    Weis M, von Scheidt W (1997) Cardiac allograft vasculopathy: a review. Circulation 96:2069–2077PubMedCrossRefGoogle Scholar
  40. 39.
    White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310:819–824PubMedCrossRefGoogle Scholar
  41. 40.
    Wilke N, Jerosch-Herold M, Wang Y et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384PubMedGoogle Scholar
  42. 41.
    Wilke N, Simm C, Zhang J et al (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497PubMedCrossRefGoogle Scholar
  43. 42.
    Wilke N, Zenovich A, Muehling O et al (2000) MR first-pass perfusion imaging performs better in individual vessels than SPECT. Circulation 102:686Google Scholar
  44. 43.
    Wilke NM, Jerosch-Herold M, Zenovich A et al (1999) Magnetic resonance first-pass myocardial perfusion imaging: clinical validation and future applications. J Magn Reson Imaging 10:676–685PubMedCrossRefGoogle Scholar
  45. 44.
    Williams DO, Amsterdam EA, Miller RR et al (1976) Functional significance of coronary collateral vessels in patients with acute myocardial infarction: relation to pump performance, cardiogenic shock and survival. Am J Cardiol 37: 345–351PubMedCrossRefGoogle Scholar
  46. 45.
    Wilson RF (1991) Assessment of the human coronary circulation using a Doppler catheter. Am J Cardiol 67:44D–56DPubMedCrossRefGoogle Scholar
  47. 46.
    Wilson RF, White CW (1987) Measurement of maximal coronary flow reserve: a technique for assessing the physiologic significance of coronary arterial lesions in humans. Herz 12:163–176PubMedGoogle Scholar
  48. 47.
    Wilson RF, Wyche K, Christensen BV et al (1990) Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–1606CrossRefGoogle Scholar
  49. 48.
    Zaacks SM, Ali A, Parrillo JE et al (1999) How well does radionuclide dipyridamole stress testing detect three-vessel coronary artery disease and ischemia in the region supplied by the most stenotic vessel? Clin Nucl Med 24:35–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Olaf M. Mühling
  • Michael Jerosch-Herold
  • Norbert M. Wilke

There are no affiliations available

Personalised recommendations