Standards for the in vitro fabrication of heart valves using human umbilical cord cells

  • Cora Lüders-Theuerkauf
  • Roland Hetzer


The most common therapy for end-stage valvular heart disease is valve replacement. Currently, 300 000 procedures are performed annually world-wide. Furthermore, 8 of 1000 children are born with congenital cardiac defects. Every fifth of these needs a heart valve replacement. Clinically available heart valve substitutes, including biological prostheses such as xenografts and homografts, and mechanical prostheses have satisfactory hemodynamic properties and function well but have several limitations in common, for example, an increased risk of infection and, particularly in pediatric patients, an increased potential for degeneration and calcification [1, 2, 3]. Furthermore, these substitutes consist of foreign, nonviable materials which entail the risk of thromboembolism and the lack of ability to remodel, repair, and grow. Pediatric patients are of particular interest in this context because they “outgrow” the prostheses so that multiple reoperations and considerable suffering for the patients and their families are the consequence [4]. Tissue engineering could be an alternative in overcoming these disadvantages. The interdisciplinary approach of tissue engineering combines principles of engineering and material science with biology and vascular surgery to fabricate viable and functional prostheses from autologous, living cells with the aim of long-lasting replacement or reconstruction of the dysfunctional native tissue.


Tissue Engineering Heart Valve Heart Valve Prosthesis Heart Valve Tissue Human Marrow Stromal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braunwald E (1997) Valvular heart disease. In: Braunwald E (ed) Heart disease 5th edition, Philadelphia: Saunders CompanyGoogle Scholar
  2. 2.
    Hammermeister KE, Sethi GK, Henderson WG et al (1993) A comparison of outcomes comes in men 11 years after heart-valve replacement with mechanical valve or bioprosthesis. N Engl J Med 328:1289–1296CrossRefPubMedGoogle Scholar
  3. 3.
    Vongpatanasin W, Hillis D, Lange RA (1996) Prosthetic heart valves. N Engl J Med 335:407–416CrossRefPubMedGoogle Scholar
  4. 4.
    Cannegieter SC, Rosendaal FR, Briet E (1994) Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89:635–641PubMedGoogle Scholar
  5. 5.
    Moriya T, Wada Y, Watanabe A, Sasho T, Nakagawa K, Mainil-Varlet P, Moriya H (2007) Evaluation of reparative cartilage after autologous chondrocyte implantation for osteochondritis dissecans: histology, biochemistry, and MR imaging. J Orthop Sci 12(3):265–273CrossRefPubMedGoogle Scholar
  6. 6.
    Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. The Lancet 372:2023–2030CrossRefGoogle Scholar
  7. 7.
    Loss M, Wedler V, Künzi W, Meuli-Simmen C, Meyer VE (2000) Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26(7):644–562CrossRefPubMedGoogle Scholar
  8. 8.
    Shinoka T, Imai Y, Ikada Y (2001) Transplantation of a tissue engineered pulmonary artery. N Engl J Med 344(7):532–533CrossRefGoogle Scholar
  9. 9.
    Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114[suppl I]:I-132–I-137CrossRefGoogle Scholar
  10. 10.
    Dohmen PM, Lembcke A, Hotz H, Kivelitz D, Konertz WF (2002) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74(5):143814–42CrossRefGoogle Scholar
  11. 11.
    Weinberg CB, Bell E (1986) A blood vessel constructed from collagen and cultured vascular cells. Science 231(4736):397–400CrossRefPubMedGoogle Scholar
  12. 12.
    L’Heureux N, Germain L, Labbé R, Auger FA (1993) In vitro construction of a human blood vessel from cultures vascular cells: a morphologic study. J Vasc Surg 17(3):499–509CrossRefPubMedGoogle Scholar
  13. 13.
    Hirai J, Kanda K, Oka T, Matsuda K (1994) Highly oriented tubular hybrid vascular tissue for a low pressure circulatory system. ASAIO J 40(3):M383–M388CrossRefPubMedGoogle Scholar
  14. 14.
    Girton TS, Oegema TR, Tranquillo RT. (1999) Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J Biomed Mater Res; 46(11):87–92CrossRefPubMedGoogle Scholar
  15. 15.
    Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-based blood vessel constructs induces remodeling in vitro. Ann Biomed Engineering 28:351–362CrossRefGoogle Scholar
  16. 16.
    Jockenhoevel S, Zünd G, Hoerstrup S, Chalabi K, Sachweh J, Demircan B, Turina M (2001) Fibrin gel — advantages of a new scaffold in cardiovascular tissue engineering. Europ J Cardio Thorac Surg 19:424–430CrossRefGoogle Scholar
  17. 17.
    Dohmen PM, Konertz W (2008) Decellularization of xenogenic biologic tissue. Ann Thorac Surg 85(6):2163; author reply 2163–2164CrossRefPubMedGoogle Scholar
  18. 18.
    Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13 (5):377–383CrossRefPubMedGoogle Scholar
  19. 19.
    Konertz W, Dohmen PM, Liu J, Beholz S, Dushe S, Posner S, Lembcke A, Erdbrügger W (2005) Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. J Heart Valve Dis 14(1):78–81PubMedGoogle Scholar
  20. 20.
    Dohmen PM, Lembcke A, Holinski S, Kivelitz D, Braun JP, Pruss A, Konertz W (2007) Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84(3):729–736CrossRefPubMedGoogle Scholar
  21. 21.
    Erdbrügger W, Konertz W, Dohmen PM, Posner S, Ellerbrok H, Brodde OE, Robenek H, Modersohn D, Pruss A, Holinski S, Stein-Konertz M, Pauli G (2006) Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng 12(8):2059–2068CrossRefPubMedGoogle Scholar
  22. 22.
    Purohit M, Kitchiner D, Pozzi M (2004) Contegra bovine jugular vein right ventricle to pulmonary artery conduit in Ross procedure. Ann Thorac Surg 77(5):1707–1710CrossRefPubMedGoogle Scholar
  23. 23.
    Bechtel JF, Stierle U, Sievers HH (2008) Fifty-two months’ mean follow up of decellularized SynerGraft-treated pulmonary valve allografts. J Heart Valve Dis 17(1):98–104, discussion 104PubMedGoogle Scholar
  24. 24.
    Elkins RC, Dawson PE, Goldstein S, Walsh SP, Black KS (2001) Decellularized human valve allografts. Ann Thorac Surg 71:S428–S432CrossRefPubMedGoogle Scholar
  25. 25.
    Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60(6 Suppl):S513–S516CrossRefPubMedGoogle Scholar
  26. 26.
    Ye Q, Zünd G, Jockenhoevel S, Schoeberlein A, Hoerstrup S, Grunenfelder J, Benedikt P, Turina M (2000) Scaffold precoating with human autologous extracellular matrix for improved cell attachment in cardiovascular tissue engineering. ASAIO J 46:730–733CrossRefPubMedGoogle Scholar
  27. 27.
    Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(19 Suppl 3): III44–III49PubMedGoogle Scholar
  28. 28.
    Sodian R, Lüders C, Krämer L, Kübler WM, Shakibaei M, Reichart B, Däbritz S, Hetzer R (2006) Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 81(6):2207–2216CrossRefPubMedGoogle Scholar
  29. 29.
    Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X, Shinoka T, Breuer CK (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248(3):370–377PubMedGoogle Scholar
  30. 30.
    Wang W, Liu Y, Wang J, Jia X, Wang L, Yuan Z, Tang S, Liu M, Tang H, Yu Y (2008) A novel copolymer poly(lactide-co-beta-malic acid) with extended carboxyl arms offering better cell affinity and hemacompatibility for blood vessel engineering. Tissue Eng Part AGoogle Scholar
  31. 31.
    Schnell AM, Hoerstrup SP, Zund G, Kolb S, Sodian R, Visjager JF, Grunenfelder J, Suter A, Turina M (2001) Optimal cell source for cardiovascular tissue engineering: venous vs. aortic human myofibroblasts. Thorac Cardiovasc Surg 49(4):221–225CrossRefPubMedGoogle Scholar
  32. 32.
    Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J, Sodian R, Visjager JF, Kolb SA, Grunenfelder J, Zund G Turina M (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106(Suppl I):I143–I150PubMedGoogle Scholar
  33. 33.
    Schmidt D, Achermann J, Odermatt B, Genoni M, Zund G, Hoerstrup SP (2008) Cryopreserved amniotic fluid-derived cells: a lifelong autologous fetal stem cell source for heart valve tissue engineering. J Heart Valve Dis 17(4):446–455, discussion 455PubMedGoogle Scholar
  34. 34.
    Sodian R, Lüders C, Krämer L, Kübler WM, Shakibaei M, Reichart B, Däbritz S, Hetzer R (2006) Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 81(6):2207–2216CrossRefPubMedGoogle Scholar
  35. 35.
    Kadner A, Hoerstrup SP, Breymann C, Maurus CF, Melnitchouk S, Kadner G, Turina M (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74(4):S1422–1428CrossRefPubMedGoogle Scholar
  36. 36.
    Lueders C, Sodian R, Shakibaei M, Hetzer R (2006) Short-term culture of human neonatal myofibroblasts seeded using a novel three-dimensional rotary seeding device. ASAIO J 52(3):310–314CrossRefPubMedGoogle Scholar
  37. 37.
    Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(19 Suppl 3):III44–III49PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Cora Lüders-Theuerkauf
    • 1
  • Roland Hetzer
    • 1
  1. 1.Deutsches Herzzentrum BerlinLabor für Tissue EngineeringBerlinGermany

Personalised recommendations