Biomatrix-polymer hybrid material for heart valve tissue engineering

  • Christof Stamm
  • N. Grabow
  • G. Steinhoff


Fabrication of a viable heart valve with lifelong durability and growth potential during childhood is the common goal of all heart valve tissue engineering strategies. Despite significant improvements in valve design, patients carrying conventional prostheses remain burdened by the lifelong need for anticoagulation or the inevitable degeneration of nonvital biologic valve tissue. Research on tissue engineering of heart valves commenced in the 1990s, and several strategies have evolved ever since [29, 30]. Initially, biodegradable polymers were used as scaffolds to be seeded with the recipient’s autologous cells. This approach is feasible with a wide variety of adult, neonatal, and prenatal cell types, but requires extensive in vitro conditioning to facilitate the adhesion of cells on the polymer surface and to induce the deposition of biologic extracellular matrix components prior to implantation [21, 22, 32, 33]. A similar strategy is the production of viable heart valves based on cells embedded in biological hydrogels, which also require elaborate technology for in vitro tissue growth [18]. Alternatively, the allogenic or xenogenic extracellularized heart valve matrix has been suggested as a conveniently preformed scaffold [24, 26, 36]. Here, the idea is to remove all cellular components by enzymatic digestion, physical destruction, or chemical detergents, and without using glutaraldehyde tanning and tissue fixation [2, 13, 14, 15].


Heart Valve Valve Tissue Pulmonary Valve Replacement Decellularization Process Engineer Heart Valve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Affonso da Costa FD, Dohmen PM, Lopes SV, Lacerda G, Pohl F, Vilani R, Affonso Da Costa MB, Vieira ED, Yoschi S, Konertz W, Affonso da Costa I (2004) Comparison of cryopreserved homografts and decellularized porcine heterografts implanted in sheep. Artificial organs 28:366–370CrossRefPubMedGoogle Scholar
  2. 2.
    Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A (1998) Tissue engineering of heart valves-human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284CrossRefPubMedGoogle Scholar
  3. 3.
    Baskett RJ, Nanton MA, Warren AE, Ross DB (2003) Human leukocyte antigen-DR and ABO mismatch are associated with accelerated homograft valve failure in children: implications for therapeutic interventions. J Thorac Cardiovasc Surg 126:232–239CrossRefPubMedGoogle Scholar
  4. 4.
    Bechtel JF, Muller-Steinhardt M, Schmidtke C, Brunswik A, Stierle U, Sievers HH (2003) Evaluation of the decellularized pulmonary valve homograft (SynerGraft). J Heart Valve Dis 12:734–739; discussion 739–740PubMedGoogle Scholar
  5. 5.
    Bechtel JF, Stierle U, Sievers HH (2008) Fifty-two months’ mean follow up of decellularized SynerGraft-treated pulmonary valve allografts. J Heart Valve Dis 17: 98–104, discussion 104PubMedGoogle Scholar
  6. 6.
    Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–137CrossRefPubMedGoogle Scholar
  7. 7.
    Costa F, Dohmen P, Vieira E, Lopes SV, Colatusso C, Pereira EW, Matsuda CN, Cauduro S (2007) Ross Operation with decellularized pulmonary allografts: medium-term results. Rev Bras Cir Cardiovasc 22:454–462PubMedGoogle Scholar
  8. 8.
    Courtman DW, Errett BF, Wilson GJ (2001) The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. Journal of biomedical materials research 55:576–586CrossRefPubMedGoogle Scholar
  9. 9.
    Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ (1994) Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. Journal of biomedical materials research 28:655–666CrossRefPubMedGoogle Scholar
  10. 10.
    Courtman DW, Pereira CA, Omar S, Langdon SE, Lee JM, Wilson GJ (1995) Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets. Journal of biomedical materials research 29:1507–1516CrossRefPubMedGoogle Scholar
  11. 11.
    da Costa FD, Dohmen PM, Duarte D, von Glenn C, Lopes SV, Filho HH, da Costa MB, Konertz W (2005) Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur J Cardiothorac Surg 27:572–578CrossRefPubMedGoogle Scholar
  12. 12.
    Dohmen PM, Costa F, Lopes SV, Yoshi S, Souza FP, Vilani R, Costa MB, Konertz W (2005) Results of a decellularized porcine heart valve implanted into the juvenile sheep model. Heart Surg Forum 8:E100–E104, discussion E104CrossRefPubMedGoogle Scholar
  13. 13.
    Dohmen PM, Ozaki S, Nitsch R, Yperman J, Flameng W, Konertz W (2003) A tissue engineered heart valve implanted in a juvenile sheep model. Med Sci Monit 9:BR97–BR104PubMedGoogle Scholar
  14. 14.
    Dohmen PM, Ozaki S, Verbeken E, Yperman J, Flameng W, Konertz WF (2002) Tissue engineering of an auto-xenograft pulmonary heart valve. Asian cardiovascular & thoracic annals 10:25–30Google Scholar
  15. 15.
    Dohmen PM, Ozaki S, Yperman J, Flameng W, Konertz W (2001) Lack of calcification of tissue engineered heart valves in juvenile sheep. Seminars in thoracic and cardiovascular surgery 13:93–98PubMedGoogle Scholar
  16. 16.
    Elkins RC, Dawson PE, Goldstein S, Walsh SP, Black KS (2001) Decellularized human valve allografts. The Annals of thoracic surgery 71:S428–432CrossRefPubMedGoogle Scholar
  17. 17.
    Erdbrugger W, Konertz W, Dohmen PM, Posner S, Ellerbrok H, Brodde OE, Robenek H, Modersohn D, Pruss A, Holinski S, Stein-Konertz M, Pauli G (2006) Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue engineering 12:2059–2068CrossRefPubMedGoogle Scholar
  18. 18.
    Flanagan TC, Cornelissen C, Koch S, Tschoeke B, Sachweh JS, Schmitz-Rode T, Jockenhoevel S (2007) The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28:3388–3397CrossRefPubMedGoogle Scholar
  19. 19.
    Goldstein S, Clarke DR, Walsh SP, Black KS, O’Brien MF (2000) Transpecies heart valve transplant: advanced studies of a bioengineered xeno-autograft. Ann Thorac Surg 70:1962–1969CrossRefPubMedGoogle Scholar
  20. 20.
    Grabow N, Schmohl K, Khosravi A, Philipp M, Scharfschwerdt M, Graf B, Stamm C, Haubold A, Schmitz KP, Steinhoff G (2004) Mechanical and structural properties of a novel hybrid heart valve scaffold for tissue engineering. Artificial organs 28:971–979CrossRefPubMedGoogle Scholar
  21. 21.
    Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J, Sodian R, Visjager JF, Kolb SA, Grunenfelder J, Zund G, Turina MI (2002) Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation 106:I143–150PubMedGoogle Scholar
  22. 22.
    Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49PubMedGoogle Scholar
  23. 23.
    Hogan PG, O’Brien MF (2003) Improving the allograft valve: does the immune response matter? The Journal of thoracic and cardiovascular surgery 126:1251–1253CrossRefPubMedGoogle Scholar
  24. 24.
    Hopkins RA (2005) Tissue engineering of heart valves: decellularized valve scaffolds. Circulation 111:2712–2714CrossRefPubMedGoogle Scholar
  25. 25.
    Konertz W, Dohmen PM, Liu J, Beholz S, Dushe S, Posner S, Lembcke A, Erdbrugger W (2005) Hemodynamic characteristics of the Matrix P decellularized xenograft for pulmonary valve replacement during the Ross operation. J Heart Valve Dis 14:78–81PubMedGoogle Scholar
  26. 26.
    Leyh RG, Wilhelmi M, Rebe P, Fischer S, Kofidis T, Haverich A, Mertsching H (2003) In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg 75:1457–1463, discussion 1463CrossRefPubMedGoogle Scholar
  27. 27.
    O’Brien MF, Goldstein S, Walsh S, Black KS, Elkins R, Clarke D (1999) The Syner-Graft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Seminars in thoracic and cardiovascular surgery 11:194–200PubMedGoogle Scholar
  28. 28.
    Sayk F, Bos I, Schubert U, Wedel T, Sievers HH (2005) Histopathologic findings in a novel decellularized pulmonary homograft: an autopsy study. The Annals of thoracic surgery 79:1755–1758CrossRefPubMedGoogle Scholar
  29. 29.
    Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE, Jr. (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. The Annals of thoracic surgery 60:S513–S516CrossRefPubMedGoogle Scholar
  30. 30.
    Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, Langer R, Vacanti JP, Mayer JE, Jr. (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:II164–II168PubMedGoogle Scholar
  31. 31.
    Sievers HH, Stierle U, Schmidtke C, Bechtel M (2003) Decellularized pulmonary homograft (SynerGraft) for reconstruction of the right ventricular outflow tract: first clinical experience. Zeitschrift fur Kardiologie 92:53–59CrossRefPubMedGoogle Scholar
  32. 32.
    Sodian R, Lueders C, Kraemer L, Kuebler W, Shakibaei M, Reichart B, Daebritz S, Hetzer R (2006) Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells. Ann Thorac Surg 81:2207–2216CrossRefPubMedGoogle Scholar
  33. 33.
    Sodian R, Sperling JS, Martin DP, Egozy A, Stock U, Mayer JE, Jr., Vacanti JP (2000) Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue engineering 6:183–188CrossRefPubMedGoogle Scholar
  34. 34.
    Stamm C, Khosravi A, Grabow N, Schmohl K, Treckmann N, Drechsel A, Nan M, Schmitz KP, Haubold A, Steinhoff G (2004) Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg 78:2084–2092, discussion 2092–2083CrossRefPubMedGoogle Scholar
  35. 35.
    Stamm C, Steinhoff G (2006) When less is more: go slowly when repopulating a decellularized valve in vivo!. J Thorac Cardiovasc Surg 132:735–737, author reply 737PubMedGoogle Scholar
  36. 36.
    Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation 102:III50–III55PubMedGoogle Scholar
  37. 37.
    Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60:S353–358CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christof Stamm
    • 1
  • N. Grabow
  • G. Steinhoff
  1. 1.Deutsches Herzzentrum BerlinBerlinGermany

Personalised recommendations