Clinical results including hemodynamic performance of the Medtronic Mosaic porcine bioprosthesis up to ten years

  • Friedrich-Christian Riess
  • R. Bader
  • E. Cramer
  • L. Hansen
  • B. Kleijnen
  • G. Wahl
  • J. Wallrath
  • S. Winkel
  • N. Bleese


The main advantage of bioprosthetic cardiac valves in comparison to mechanical prosthesis is the lower incidence of antithromboembolic-related hemorrhages. However, bioprostheses have limited durability due to progressive tissue degeneration and calcification resulting in structural valve deterioration (SVD) and suboptimal hemodynamic performances. The Medtronic Mosaic bioprosthesis is a supraannular third-generation stented porcine bioprosthesis which was introduced in 1994. It is built upon the historical durability of the Hancock II valve [1] and technical innovations were incorporated into the design in an attempt to improve hemodynamic performance and durability [2]. Tissue fixation with the Medtronic Physiologic Fixation process is performed with glutaraldehyde in order to minimize the consequences of antigenicity after porcine valve implantation [3]. Furthermore, the valve design includes predilatation of the porcine aortic root and using zero net pressure across the leaflets (Fig. 1a) [4]. By this treatment, natural leaflet morphology is generally preserved. The tissue is mounted on a low-profile flexible polymer stent (Fig. 1b) to minimize hemodynamic disturbance and to make it suitable for patients with small aortic root diameters.
Fig. 1.

Supraannular valve implantation technique


After Mosaic Valve Replacement Mitral Valve Replacement Effective Orifice Area Paravalvular Leak Hemodynamic Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    David TE, Ivanov J, Armstrong S, Feindel CM, Cohen G (2001) Late results of heart valve replacement with the Hancock II bioprosthesis. J Thorac Cardiovasc Surg 121:268–278CrossRefPubMedGoogle Scholar
  2. 2.
    Fradet G, Bleese N, Busse E, Jamieson E, Raudkivi P, Goldstein J, Metras M (2004) The Mosaic valve clinical performance at seven years: results from a multi-center prospective clinical trial. J Heart Valve Dis 13(2):239–247PubMedGoogle Scholar
  3. 3.
    Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C (1969) Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovas Surg 58:467Google Scholar
  4. 4.
    Vesley I (1991) Analysis of the Medtronic Intact bioprosthesis valve. Effects of zero-pressure fixation. J Thorac Cardiovasc Surg 101:90–99Google Scholar
  5. 5.
    Duarte IG, MacDonald MJ, Cooper WA et al (2001) In vivo hemodynamic, histologic, and antimineralization charateristics of the Mosaic Bioprosthesis. Ann Thorac Surg 71:92–99CrossRefPubMedGoogle Scholar
  6. 6.
    Girardot MN, Girardot JM, Schoen FJ (1991) Alpha amino oleic acid, a new compound, prevents calcification of bioprosthetic heart valves. Trans Soc Biomater 14:114–116Google Scholar
  7. 7.
    Walther T, Falk V, Diegeler A et al (1999) Effectiveness of different anticalcification treatments for stentless aortic bioprosthesis. Thorac Cardiovasc Surg 47:23–25CrossRefPubMedGoogle Scholar
  8. 8.
    Edmunds LH, Clark RE, Cohn LH, Grunkemeier GL, Miller DC, Wiesel RD (1996) Guidelines for reporting morbidity and mortality after cardiac valvular operations. Ann Thorac Surg 62:932–935CrossRefPubMedGoogle Scholar
  9. 9.
    Peto R, Pike MC, Armitage P et al (1977) Design and analysis of randomized clinical trials requiring prolonged observation of each patient. Br J Cancer 35:1–39PubMedGoogle Scholar
  10. 10.
    Salomon NW, Okies JE, Krause AH, Page US, Bigelow JC, Colburn LQ (1991) Serial follow-up of an experimental bovine pericardial aortic bioprosthesis. Circulation 84:140–144Google Scholar
  11. 11.
    David TE, Armstrong S, Sun Z (1992) Clinical and hemodynamic assessment of the Hancock II bioprosthesis. Ann Thorac Surg 54:661–667PubMedCrossRefGoogle Scholar
  12. 12.
    McDonald ML, Daly RC, Schaff HV et al (1997) Hemodynamic performance of small aortic valve bioprostheses: Is there a difference? Ann Thorac Surg 63:362–366CrossRefPubMedGoogle Scholar
  13. 13.
    Jamieson WR, Janusz MT, Burr LH, Ling H, Miyagishima RT, Germann E (2001) Carpentier-Edwards supraannular porcine bioprosthesis: Second-generation prosthesis in aortic valve replacement. Ann Thorac Surg 71:224–227CrossRefGoogle Scholar
  14. 14.
    Jamieson WRE, Janusz Mt, MacNab J, Henderson C (2001) Hemodynamic comparison of second and third generation stented bioprostheses in aortic valve replacement. Ann Thorac Surg 71:282–284CrossRefGoogle Scholar
  15. 15.
    Wong SP, Legget ME, Greaves SC, Barratt-Boyes BG, Milsom FP, Raudkivi PJ (2000) Early experience with the mosaic bioprosthesis: A new generation porcine valve. Ann Thorac Surg 69:1846–1850CrossRefPubMedGoogle Scholar
  16. 16.
    Barratt-Boyes BG, Jaffe WM, Whitlock RM (1998) The Medtronic intact porcine valve: Ten-year clinical review. J Thorac Cardiovasc Surg 116:1005–1014CrossRefPubMedGoogle Scholar
  17. 17.
    Jones M, Eidbo EE, Hilbert SL, Ferrans VJ, Clark RE (1989) Anticalcification treatments of bioprosthetic heart valves: In vivo studies in sheep. J Card Surg 4:69–73CrossRefPubMedGoogle Scholar
  18. 18.
    Gott JP, Pan-Chih, Dorsey LMA et al (1992) Calcification of porcine valves: A successful new method of antimineralization. Ann Thorac Surg 53:207–216PubMedGoogle Scholar
  19. 19.
    Melina G, Rubens MB, Birks EJ, Bizzarri F, Khaghani A, Yacoub MH (2000) A quantitative study of calcium deposition in the aortic wall following Medtronic freestyle compared with homograft aortic root replacement. A prospedive randomized Irial. J Heart Valve Dis 9:97–103PubMedGoogle Scholar
  20. 20.
    Jamieson WRE, Janusz MT, Miyagishima RT et al (1988) Carpentier-Edwards standard porcine bioprostheses — primary tissue failure (structural valve deterioration) by age groups. Ann Thorac Surg 46:155–162PubMedCrossRefGoogle Scholar
  21. 21.
    Magilligan DJ, Lewis JW, Stein P, Alam M (1989) The porcine bioprosthetic heart valve: experiences at 15 years. Ann Thorac Surg 48:324–330PubMedCrossRefGoogle Scholar
  22. 22.
    Sarris GE, Robbins RC, Miller DC, Mitchell RS, Moore KA, Stinson EB, Oyer PE, Reitz BA, Shumway NE (1993) Randomized, prospective assessment of bioprosthetic valve durability. Hancock versus Carpentier-Edwards valves. Circulation 88(5 Pt 2):II55–II64PubMedGoogle Scholar
  23. 23.
    Jamieson WRE, Allen P, Miyagishima RT, Gerein AN, Munro AI, Burr LH et al (1990) The Carpentier-Edwards standard porcine bioprosthesis: a first-generation tissue valve with excellent longterm clinical performance. J Thorac Cardiovasc Surg 99:543–561PubMedGoogle Scholar
  24. 24.
    Jones EL, Weintraub WS, Craver JM, Guyton RA, Cohen CL, Corrigan VE, Hatcher CR (1990) Ten-year experience with the porcine bioprosthetic valve: inter-relationship of valve survival and patient survival in 1050 valve replacements. Ann Thorac Surg 49:370–384PubMedCrossRefGoogle Scholar
  25. 25.
    Pelletier LC, Carrier M, Leclerc Y, Dyrda I (1995) The Carpentier-Edwards pericardial bioprosthesis: clinical experience with 600 patients. Ann Thorac Surg 60 (2 Suppl): 297–302Google Scholar
  26. 26.
    Poirier NC, Pelletier LC, Pellerin M, Carrier M (1998) 15 year experience willi the Carpentier-Edwards pericardial bioprosthesis. Ann Thorac Surg 66:57–61CrossRefGoogle Scholar
  27. 27.
    Jamieson WR, Munro AI, Miyagishima RT, Allen P, Burr LH, Tyers GF (1995) Carpentier-Edwards standard porcine bioprosthesis: Clinical performance to seventeen years. Ann Thorac Surg 60:999–1006CrossRefPubMedGoogle Scholar
  28. 28.
    Akins CW, Carroll DL, Buckley MJ, Daggett WM, Hilgenberg AD, Austen WG (1990) Late results with Carpentier-Edwards porcine bioprosthesis. Circulation 82(Suppl IV):65–74Google Scholar
  29. 29.
    Banbury MK, Cosgrove DM, III, Lytle BW, Smedira NG, Sabik JF, Saunders CR (1998) Long-term results of the Carpentier-Edwards pericardial aortic valve: a 12 year follow-up. Ann Thorac Surg 66:S73–S76CrossRefPubMedGoogle Scholar
  30. 30.
    Frater RW, Furlong P, Cosgrove DM et al (1998) Longterm durability and patient functional status of die Carpentier-Edwards perimount pericardial bioprosthesis in the aortic position. J Heart Valve Dis 7:48–53PubMedGoogle Scholar
  31. 31.
    Myken PS, Caidahl K, Larsson S, Berggren HE (1994) 10-year experience with the Biocor porcine bioprosthesis in the aortic position. J Heart Valve Dis 3:648–656PubMedGoogle Scholar
  32. 32.
    Dellgren G, Eriksson MJ, Brodin LA, Radegran K (2002) Eleven years’ experience with the Biocor stentless aortic bioprosthesis: Clinical and hemodynamic follow-up with long-term relative survival rate. Eur J Cardiothorac Surg 22:912–921CrossRefPubMedGoogle Scholar
  33. 33.
    Bernal JM, Rabasa JM, Lopez R, Nistal JF, Muniz R, Revuelta JM (1995) Durability of the Carpentier-Edwards porcine bioprosthesis: Role of age and valve position. Ann Thorac Surg 60:S248–S252CrossRefPubMedGoogle Scholar
  34. 34.
    Gansera B, Botzenhardt F, Grünzinger R, Spiliopoulos K, Angelis I, Kemkes BM (2003) The Mosaic bioprosthesis in aortic position: seven years’ results. J Heart Valve Disease 12:354–361Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Friedrich-Christian Riess
    • 1
  • R. Bader
  • E. Cramer
  • L. Hansen
  • B. Kleijnen
  • G. Wahl
  • J. Wallrath
  • S. Winkel
  • N. Bleese
  1. 1.Abteilung für HerzchirurgieAlbertinen-KrankenhausHamburgGermany

Personalised recommendations