Skip to main content

Part of the book series: Monographien aus dem Gesamtgebiete der Psychiatrie ((PSYCHIATRIE,volume 114))

  • 590 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Adamec E, Vonsattel JP, Nixon RA (1999) DNA strand breaks in Alzheimer disease. Brain Res 849:67–77

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia N, Mastro AM, Ball R, Miles MP, Rajendra R, Handte G (2001) Cytokine production by stimulated mononuclear cells did not change with aging in apparently healthy, well-nourished women. Mech Ageing Dev 122:1269–1279

    Article  PubMed  CAS  Google Scholar 

  • Ahluwalia N, Vellas B (2003) Immunologic and inflammatory mediators and cognitive decline in AD. Immunol Allerg Clin North Am 23:103–115

    Article  Google Scholar 

  • Aisen PS, Davies KL (1994) Inflammatory mechanisms in Alzheimer’s disease. Implications for therapy. Am J Psychiatry 51:1105–1113

    Google Scholar 

  • Aisen PS, Pasinetti GM (1998) Glucocorticoids in Alzheimer’s disease: the story so far. Drugs Aging 12:1–6

    Article  PubMed  CAS  Google Scholar 

  • Aisen P, Schaefer K, Grundman M et al. (2002) Results of a multicenter trial of rofecoxib and naproxen in Alzheimer’s disease. Neurobiol Aging 23:S429

    Google Scholar 

  • Akiyama H, Barger S, Barnum S et al. (2000) Inflammation and Alzheimer’s disease. Neuroinflammation Working Group. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  • Aloisi F, Ria F, Adorini L (2000) Regulation of T-cell responses by CNS-antigen-presenting cells: Different roles for microglia and astrocytes. Immunol Today; 21:141–147

    Article  PubMed  CAS  Google Scholar 

  • Alzheimer A (1906) Über einen eigenartigen, schweren Erkrankungsprozess der Hirnrinde. Neurol Centralbl 25:1134

    Google Scholar 

  • Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Z gesamte Neurol Psychiatr 4:356–385

    Google Scholar 

  • Androsova LV, Sekirina TP, Selezneva ND, Koliaskin G, Gavrilova SI (1995) Changes in the immunological parameters in Alzheimer’s disease. Their relation to disease severity. Zh Nevor Psikhiatr Im S S Korsakova 9595:24–27

    Google Scholar 

  • Angelis P, Scharf S, Mander A et al. (1998) Serum interleukin-6 and interleukin-6 soluble receptor in Alzheimer’s disease. Neurosci Lett 244:106–108

    Article  PubMed  CAS  Google Scholar 

  • Antonaci S, Garofalo AR, Chicco C et al. (1990) Senile dementia, Alzheimer type: a distinct entity in the immunosenescence? J Clin Lab Anal 4:16–21

    Article  PubMed  CAS  Google Scholar 

  • Apelt J, Schliebs R (2001) β-amyloid-induced glial expression of both pro-and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Research 894:21–30

    Article  PubMed  CAS  Google Scholar 

  • Araga S, Kagimoto H, Funamoto K, Takahashi K (1991) Reduced natural killer cell activity in patients with dementia of Alzheimer type. Acta Neurol Scand 844:259–263

    Article  Google Scholar 

  • Avidan H, Kipnis J, Butovsky O, Caspi RR, Schwartz M (2004) Vaccination with autoantigen protects against aggregated beta-amyloid and glutamtate toxicity by controlling microglia: effect of CD4(+)CD35(+) T cells. Eur J Immunol 17:3434–3445

    Article  CAS  Google Scholar 

  • Bagli M, Papassotiropoulos A, Hampel H, Becker K, Jessen F, Bürger K, Ptok U, Rao ML, Möller HJ, Heun R: (2003) Polymorphisms of the gene encoding th inflammatory cytokine interleukin-6 determine the magnitude of the increase in soluble interleukin-6 receptor levels in Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 253:44–48

    Article  PubMed  Google Scholar 

  • Baldinger A, Blumenthal HT (1982) Neuroimmunology of the aging brain. In: Platt D (ed) Geriatrics. Springer, Berlin, pp 283–299

    Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL et al. (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 6:916–919

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Barbour R, Cannon C et al. (2003) Epitope ad isotope specificities of antibodies to beta-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA; 100:2023–2028

    Article  PubMed  CAS  Google Scholar 

  • Barger SW, Hörster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP (1995) Tumor necrosis factor α and β protect neurons against β-peptide toxicity: evidence for involvement of the κB-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci USA 92:9328–9332

    Article  PubMed  CAS  Google Scholar 

  • Becher B, Barker PA, Owens T, Antel JP: CD95-CD95L (1998) Can the brain learn from the immune system? TINS 21:114–117

    PubMed  CAS  Google Scholar 

  • Becher B, Prat A, Antel JP (2000) Brain-immune connection: immunoregulatory properties of CNS-resident cells. Glia 29:293–304

    Article  PubMed  CAS  Google Scholar 

  • Behan PO, Feldman RG: Serum proteins (1970) Amyloid and Alzheimer’s disease. J Am Ger Soc 18:792–797

    CAS  Google Scholar 

  • Beharka AA, Meydani M, Wu D, Leka LS, Meydani A, Meydani SN (2001) Interleukin — 6 production does not increase with age. J Gerontol A Biol Sci Med Sci 56:B81–88

    PubMed  CAS  Google Scholar 

  • Beloosesky Y, Salman H, Bergman M, Bessler H, Djaldetti M (2002) Cytokine levels and phagocytic activity in patients with Alzheimer’s disease. Gerontology 48:128–132

    Article  PubMed  Google Scholar 

  • Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanisms of action. Am J Physiol; 263:C1–C6

    PubMed  CAS  Google Scholar 

  • Bergman M, Salman H, Beloosesky Y, Djaldetti M, Bessler H (2002) Are peripheral blood cells from patients with Alzheimer disease more sensitive to apoptotic stimuli? Alzheimer Dis Assoc Disord 16:156–160

    Article  PubMed  CAS  Google Scholar 

  • Bessler H, Sirota P, Hart J, Djaldetti M (1989) Lymphokine production in patients with Alzheimer’s disease. Age Ageing 18:21–25

    Article  PubMed  CAS  Google Scholar 

  • Bickel H (2000) Demenzsyndrom und Alzheimer Krankheit: Eine Schätzung des Krankenbestandes und der jährlichen Neuerkankungen in Deutschland. Gesundheitswesen 62:211–218

    Article  PubMed  CAS  Google Scholar 

  • Blasko I, Grubeck-Loebenstein B (2003a) Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging 20:101–113

    Article  PubMed  CAS  Google Scholar 

  • Blasko I, Grubeck-Loebenstein B (2003b) Impfung gegen Alzheimer? Wien Klin Wochenschr 115:279–280

    PubMed  Google Scholar 

  • Blennow K, Fredman P, Gottfries CD, Karlsson J, Svennerhom L (1990) Intrathecal synthesis of immunoglobulins in patients with Alzheimer’s disease. Eur Neuropsychopharmacol 1:79–81

    Article  PubMed  CAS  Google Scholar 

  • Blum-Degen D, Müller T, Kuhn W, Gerlach M, Przuntek H, Riederer P (1995) Interleukin-1β and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinsons’s disease patients. Neurosci Lett 292:17–20

    Article  Google Scholar 

  • Bowler JV, Munoz DG, Merskey H, Hachinski V (1998) Fallacies in the pathological confirmation of the diagnosis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 64:18–24

    PubMed  CAS  Google Scholar 

  • Breitner J, Gau B, Welsh K et al. (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44:227–232

    PubMed  CAS  Google Scholar 

  • Breitner JM, Welsh K, Helms M et al. (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16:523–530

    Article  PubMed  CAS  Google Scholar 

  • Brod SA (2000): Unregulated inflammation shortens human functional longevity. Inflamm Res 49:561–570

    Article  PubMed  CAS  Google Scholar 

  • Broytman O, Malter JS (2004) Anti-Abeta: the good, the bad, and the unforeseen. J Neurosci Res 75:301–306

    Article  PubMed  CAS  Google Scholar 

  • Bruunsgard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8:131–136

    Article  Google Scholar 

  • Burns E, Goodwin J (1996) Changes in immunological function. In: Cassel CK, Cohen HJ, Larson EB (eds): Geriatric Medicine, 3rd edn. Springer, New York, pp 585–597

    Google Scholar 

  • Butje TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10.

    Article  Google Scholar 

  • Cacabelos R, Alvarez XA, Franco-Maside A, Fernández-Novoa L, Caamaño J (1994) Serum tumor necrosis factor (TNF) in Alzheimer’s disease and multiinfarct-dementia. Methods Find Exp Clin Pharmacol 16:29–35.

    PubMed  CAS  Google Scholar 

  • Carro E, Trejo J, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-β levels. Nature Med 8:1390–1397

    Article  PubMed  CAS  Google Scholar 

  • Cazzulo CL, Trabattoni D, Sarasella M et al. (2003) Research on Psychoimmunology. World J Biol Psychiatry 4:119–123.

    Article  Google Scholar 

  • Chan CW, Dharmarajan A, Atwood CS et al. (1999) Antiapoptotic action of Alzheimer A beta. Alzheimer Reports 82:113–119

    Google Scholar 

  • Chapman J, Alroy G, Weiss Z, Faigon M, Feldon J, Michaelson DM (1991) Antineuronal antibodies similar to those found in Alzheimer’s disease induce memory dysfunction in rats. Neuroscience 40:297–305.

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Grundke-Iqbal I, Iqbal K (2004) Enhancement of neurogenesis by neurotrophic factors: A therapeutic approach to Alzheimer disease. Neurobiol Aging 25:200.

    Article  Google Scholar 

  • Cheng B, Christakos A, Mattson MP (1994) Tumor necrosis factor protects against excitotoxic/metabolic insults and promote maintenance of calcium homeostasis. Neuron 12:139–153

    Article  PubMed  CAS  Google Scholar 

  • Cheng JT, Zhou T, Liu C et al.1(1994) Protection from Fas — mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Cirrito JR, Holtzman DM (2003) Amyloid beta and Alzheimer’s disease therapeutics: the devil may be in the details. J Clin Invest 112:321–323

    Article  PubMed  CAS  Google Scholar 

  • Ciusani E, Frigerio S, Gelati M et al. (1998) Soluble Fas (Apo-1) levels in cerebrospinal fluid of multiple sclerosis patients. J Neuroimmunol 82:5–12

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW (1998) Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 19:29–32

    Article  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain-barrier and the immunoreactivity in the brain: A new view. Immunol Today 13:507–512

    Article  PubMed  CAS  Google Scholar 

  • Cummings JL, Vinters HV, Cole GM, Khatchaturian ZS (1998) Alzheimer’s disease. Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 1998 51(Suppl.1): S2–S17

    PubMed  CAS  Google Scholar 

  • D’Andrea MR (2003) Evidence linking neuronal cell death to autoimmunity in Alzheimer’s disease. Brain Res 982:19–30

    Article  PubMed  CAS  Google Scholar 

  • Daynes RA, Enioutina EY, Jones DC (2003) Role of redox imbalance in the molecular mechanisms responsible for immunosenescence. Antioxid Redox Signal 5:537–548

    Article  PubMed  CAS  Google Scholar 

  • Deane R, Yan S, Submamaryant R et al. (2003) RAGE mediates amyloid-peptide transport across the blood-brain barrier and accumulation in brain. Nat Med 9:907–913

    Article  PubMed  CAS  Google Scholar 

  • De la Monte S, Sohn YK, Wands JR (1997) Correlates of p53 and Fas (CD 95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci 152:73–83

    Article  PubMed  Google Scholar 

  • De la Monte SM, Sohn YK, Ganju N, Wands JR (1998) p53-and CD95-associated apoptosis in neurodegenerative disorders. Lab Invest 78:401–411

    PubMed  Google Scholar 

  • De la Monte SM, Luong T, Neely TR et al. (2000) Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer disease. Lab Invest 80:1323–1335

    PubMed  Google Scholar 

  • De Luigi A, Fragiacomo C, Lucca U, Quadri P, Tattamanti M, De Simoni MG (2001) Inflammatory markers in Alzheimer’s disease and multi-infarct dementia. Mech Ageing Dev 122:1985–1995

    Article  PubMed  Google Scholar 

  • DeMattos RB, Bales KR, Cummins DJ et al. (2001) Peripheral anti-A-beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 19:8850–8855

    Article  Google Scholar 

  • Dennett NS, Barcia RN, McLeod JD (2002) Age associated decline in CD25 and CD28 expression correlate with an increased susceptibility to CD95 mediated apoptosis in T cells. Exp Gerontol 37:271–283

    Article  PubMed  CAS  Google Scholar 

  • DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340

    Article  PubMed  CAS  Google Scholar 

  • DiCarlo G, Wilcock D, Henderson D, Gordon M, Morgan D (2001) Intrahippocampal LPS injections reduce Abeta load in APP + PS1 transgenic mice. Neurobiol Aging 22: 1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Dickson DW, Sunhee CL, Brosnan CF, Sinicropi S, Vlassara H, Yen SC (1996) Neuroimmunology of Aging and Alzheimer’s disease with emphasis on cytokines. In: Ransohoff RM, Benveniste EN (eds): Cytokines and the CNS. CRC Press, Boca Raton (Florida), pp 239–267

    Google Scholar 

  • Dodel RC, Hampel H, Du Y (2003) Immunotherapy for Alzheimer’s disease. Lancet Neurol 2:215–220

    Article  PubMed  CAS  Google Scholar 

  • Donnini A, Re F, Bollettini M et al. (2005) Age-related susceptibility of naive and memory CD4 T cells to apoptosis induced by IL-2 deprivation or PHA addition. Biogerontology 6:193–204

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Dodel R, Hampel H (2001) Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology 57:801–805

    PubMed  CAS  Google Scholar 

  • Du Y, Wei X, Dodel R et al. (2003) Human anti-beta-amyloid antibodies block beta-amyloid fibril formation and prevent beta-amyloid-induced neurotoxicity. Brain 126:1935–1939

    Article  PubMed  Google Scholar 

  • Eckert A, Förstl H, Zerfass R, Hartmann H, Müller WE (1996) Lymphocytes and neutrophils as peripheral models to study the effect of-amyloid on cellular calcium signalling in Alzheimer’ s disease. Life Sci 59:499–510

    Article  PubMed  CAS  Google Scholar 

  • Eckert A, Cotman CW, Zerfass R, Hennerici M, Müller WE (1998a) Lymphocytes as cell model to study apoptosis in Alzheimer’s Disease: Vulnerability to programmed cell death appears to be altered. J Neural Transm 54:259–267

    CAS  Google Scholar 

  • Eckert A, Cotman CW, Zerfass R, Hennerici M, Müller WE (1998b) Enhanced vulnerability to apoptotic cell death in sporadic Alzheimer’s disease. Neuroreport 9:2443–2446

    Article  PubMed  CAS  Google Scholar 

  • Effros RB (1998) Replicative senescence in the immune system: Impact of the Hayflick limit on T cell function in the elderly. Am J Hum Genet 62:1003–1007

    Article  PubMed  CAS  Google Scholar 

  • Effros RB, Cai Z, Lintons PJ (2003) CD 8 T cells and aging. Crit Rev Immunol. 23:45–64

    Article  PubMed  CAS  Google Scholar 

  • Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA / Neurobiology 94:4080–4085

    Article  CAS  Google Scholar 

  • Eikelenboom P, Zhan SS, Kamphorst W, Van der Valk P, Rozemuller JM (1994) Cellular and substrate adhesion molecules (integrins) and their ligands in cerebral amyloid plaques in Alzheimer’s disease. Virchows Arch 424:421–427

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom P, van Gool WA (2004) Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm 111:281–294

    Article  PubMed  CAS  Google Scholar 

  • Engelborghs S, De Brabander M, De Cree J, D’Hooge R, Geerts H, Verhaegen H, De Deyn PP (1999) Unchanged levels of interleukins, neopterin, interferon-gamma and tumor necrosis factor-alpha in cerebrospinal fluid of patients with dementia of the Alzheimer type. Neurochem Int 34:523–530

    Article  PubMed  CAS  Google Scholar 

  • Ershler WB (1993) Interleukin-6: A cytokine for gerontologists. J Am Ger Soc 41:176–181

    CAS  Google Scholar 

  • Esumi E, Araga S, Takahashi K (1991) Serum interleukin-2 levels in patients with dementia of the Alzheimer type. Acta Neurol Scand 84:65–67

    PubMed  CAS  Google Scholar 

  • Farris EJ (1938): Increase in lymphocytes in healthy persons under certain emotional states. Am J Anat 63:297–322

    Article  Google Scholar 

  • Fassbender K, Maters C, Beyreuther K (2000) Alzheimer’s disease: An inflammatory disease? Neurobiol Aging 21:433–436

    Article  PubMed  CAS  Google Scholar 

  • Fiala M, Liu QN, Sayre J et al. (2002) Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain-barrier. Eur J Clin Invest 32:360–371

    Article  PubMed  CAS  Google Scholar 

  • Fiala M, Lin J, Ringman J et al. (2005) Ineffective phagocytosis of amyloid-β by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 7:221–232

    PubMed  CAS  Google Scholar 

  • Fillit HM, Foley P, Bradford HF et al. (1989) Auto-immunity to cholinergic-specific antigens of the brain in senile dementia of the Alzheimer type. Drug Dev Res 15:1–9

    Google Scholar 

  • Förstl H, Jablenski J (1999) Organisch bedingte psychische Störungen. Psychiatrie der Gegenwart. Bd. IV. Springer, Berlin Heidelberg New York, pp 1–12

    Google Scholar 

  • Förstl H (1999) Die Alzheimer Demenz-ein Problem mit Zukunft. In: Förstl H, Bickel H, Kurz A (Hrsg) Alzheimer Demenz. Grundlagen, Klinik und Therapie. Springer, Berlin Heidelberg New York, S 3–8

    Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1974) ‘Mini-Mental-State’: A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  Google Scholar 

  • Fox NC, Black RS, Gilman S et al. (2005) Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64: 1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Monti D, Scarfi MR et al. (1992) Genomic instability and aging. Studies in centenarians (successful aging) and in patients with Down’s syndrome (accelerated aging). Ann N Y Acad Sci 663:4–16

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Bonafe M: Centenarians as a model for healthy aging. Biochem Soc Trans 2003; 31:457–61.

    Article  PubMed  CAS  Google Scholar 

  • Frautschy SA, Cole GM, Baird A (1992) Phagocytosis and depsition of vascular beta-amyloid in rat brains injected with Alzheimer beta-aymloid. Am J Pathol 140:1389–1399

    PubMed  CAS  Google Scholar 

  • Frautschy SA, Yang F, Irrizarry M et al. (1998) Microglial response to amyoid plaques in APPsw transgenic mice. Am J Pathol 152:307–317

    PubMed  CAS  Google Scholar 

  • Fujiwara Y (1996) The mechanisms of ageing and perspective for elimination of deleterious effects. Nippon Ronen Igakkai Zhassi 33:499–502

    CAS  Google Scholar 

  • Garlind A, Brauner A, Hojeberg B et al. (1999) Soluble interleukin-1 receptor type II levels are elevated in cerebro-spinal fluid in Alzheimer’s disease patients. Brain Res 826:112–116

    Article  PubMed  CAS  Google Scholar 

  • Gasiorowski K, Leszek J (1997) A proposed new strategy of immunotherapy for Alzheimer’s disease. Med Hypotheses 49:319–326

    Article  PubMed  CAS  Google Scholar 

  • Gaskin F, Kingsley BS, Fu SM (1987) Autoantibodies to neurofibrillary tangels and brain tissue in Alzheimer’s disease. Establishment of Epstein-Barr virus-transformed antibody producing cell lines. J Exp Med 1165:245–250

    Article  Google Scholar 

  • Gaskin F, Finley J, Fang Q et al. (1993) Human antibodies reactive with β-amyloid protein in Alzheimer’s disease. J Exp Med 177:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Gelinas DS, DaSilva K, Fenili D, St George-Hyslop P, McLaurin J 2004) Immunotherapy for Alzheimer’s disease. Proc Natl Acad Sci U S A. 101(Suppl 2):14657–14662

    Article  PubMed  CAS  Google Scholar 

  • Gillis S, Kozak R, Durante M, Weksler ME (1981) Immunological studies of aging. Decreased product of and response to T cell growth factor by lymphocytes from aged humans. J Clin Invest 67:937–942

    PubMed  CAS  Google Scholar 

  • Gilman S, Koller M, Black RS et al. (2005) Clinical effects of Aβ immunization (AN 1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562

    Article  PubMed  CAS  Google Scholar 

  • Ginaldi L, De-Martinis M, D’Ostilio A et al. (1999) The immune system in the elderly: II. Specific cellular immunity. Immunol Res 20:109–115

    PubMed  CAS  Google Scholar 

  • Giubilei F, Antonini G, Montesperelli C et al. (2003) T cell response to amyloid-beta and to mitochondrial antigens in Alzheimer’s disease. Dement Geriatr Cogn Disord 16:35–38

    Article  PubMed  CAS  Google Scholar 

  • Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacology Biol Psychiatry 28:559–576

    Article  Google Scholar 

  • Glaser R, MacCallum RC (2001) Evidence for a shift in the Th-1 to Th-2 cytokine response associated with chronic stress and aging. J Gerontol A Biol Sci Med Sci 56:M477–482

    PubMed  CAS  Google Scholar 

  • Glenner CG (1980) Amyloid deposits and amyloidosis — the β-fibrilloses. N Engl J Med 302:1283–1285

    Article  PubMed  CAS  Google Scholar 

  • Ghochikyan A, Petrushina I, Lees A et al. (2006) Abeta-immunotherapy for Alzheimer’s disease using mannan-amyloid-Beta peptide immunoconjugates. DNA Cell Biol 25:571–580

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith HS (2002) Treatment of Alzheimer’s disease by transposition of the omentum. Ann NY Acad Sci 977:454–467

    PubMed  Google Scholar 

  • Goldsmith HS, Wu W, Zhong J, Edgar M (2003) Omental transposition to the brain as a surgical method for treating Alzheimer’s disease. Neurol Res 25:625–634

    Article  PubMed  Google Scholar 

  • Govoni S, Bergamachi S, Gasparini L et al. (1996) Fibroblasts of patients affected by Down’s syndrome oversecrete amyloid precursor protein and are hyporesponsive to protein kinase C stimulation. Neurology 47:1069–1075

    PubMed  CAS  Google Scholar 

  • Gregg R, Smith CM, Clark FJ et al. (2005) The number of human peripheral blood CD4+ CD25+high regulatory T cells increases with age. Clin Exp Immunol 140:540–546

    Article  PubMed  CAS  Google Scholar 

  • Griffin WS, Sheng JG, Royston MC et al. (1998) Glial-neuronal interactions in Alzheimer’s disease. The potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 85:1–10

    Google Scholar 

  • Grossmann A, Kukull WA, Jinneman JC, Birt TD, Vilacreees EC, Larson EB, Rabinovitch PS (1993) Intracellular calcium response is reduced in CD4+ lymphocytes in Alzheimer’s disease and in older persons with Down’s syndrome. Neurobiol Aging 14:177–185

    Article  PubMed  CAS  Google Scholar 

  • Grubeck-Loebenstein B (1997) Changes in the aging immune system. Biologicals 25:205–208

    Article  PubMed  CAS  Google Scholar 

  • Grubeck-Loebenstein B, Wick G (2002) The aging of the immune system. Adv Immunol 80:243–284.

    Article  PubMed  CAS  Google Scholar 

  • Guayerbas N, Puerto M, Victor VM, Miquel J, De la Fuente M (2002) Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol 37:249–256

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY et al. (1992) Amyloid betapeptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75:1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Müllerspahn F, Berger C, Haberl A, Ackenheil M, Hock C (1995) Evidence of blood cerebrospinal-fluid-barrier impairment in a subgroup of patients with dementia of the Alzheimer’s type and major depression. Dementia 6:348–354

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Schoen D, Schwarz MJ et al. (1997) Interleukin-6 is not altered in cerebrospinal fluid of first-degree relatives and patients with Alzheimer’s disease. Neurosci Lett 228:143–146

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Sunderland T, Kotter HU et al. (1998) Decreased soluble interleukin-6 receptor in cerebrospinal fluid of patients with Alzheimer’s disease. Brain Res 780:356–359

    Article  PubMed  CAS  Google Scholar 

  • Hampel H, Kotter HU, Padberg F, Korschenhausen DA, Moeller HJ (1999) Oligoclonal bands and blood-cerebrospinal-fluid barrier dysfunction in a subset of patients with Alzheimer’s disease: comparison with vascular dementia, major depression, and multiple sclerosis. Alzheimer Dis Assoc Disord 13:9–19

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I (1997) Twentyfour hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s Disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 18:285–289

    Article  PubMed  CAS  Google Scholar 

  • Hartwig M: Immune ageing and Alzheimer’s disease. (1995) Neuroreport 6:1274–1276

    PubMed  CAS  Google Scholar 

  • Hasunuma T, Kayagaki N, Asahara H et al. (1997) Accumulation of soluble Fas in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 40:30–36

    Google Scholar 

  • Hayflick L (1985) The biology of cell aging. Clin Geriatr Med 1:15

    PubMed  CAS  Google Scholar 

  • Haynes L, Eaton SM, Burns EM, Rincon M, Swain SL (2004) Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol 172:5194–5199

    PubMed  CAS  Google Scholar 

  • Haynes L, Eaton SM (2005) The effect of age on the cognate function of CD4+ T cells. Immunol Rev 205:220–228.

    Article  PubMed  CAS  Google Scholar 

  • Henneberg AE (1997) Chronic schizophrenia and Alzheimer’s disease from viewpoint of a neuroimmunologist. In: Henneberg AE, Kaschka WP (eds): Immunological alterations in psychiatric diseases. Adv Biol Psychiatry. Karger, Basel, Vol 18, pp 102–107

    Chapter  Google Scholar 

  • Heuft G, Kruse A, Radeboild H (2000) tLehrbuch der Gerontopsychosomatik und Alterspsychotherapie. Reinhardt, München Basel, pp 191–192

    Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (1991) Interleukin 6. In: Thomson AW (ed) The Cytokine Handbook. Academic Press, London, p 169

    Google Scholar 

  • Hock Ch, Konietzko U, Papassotiropoulos A et al. (2002) Generation of antibodies specific for β-amyloid by vaccination of patients with Alzheimer disease. Nature Med 8:1270–1275

    Article  PubMed  CAS  Google Scholar 

  • Hock C, Konietzko U, Streffer JR et al. (2003) Antibodies against betaamyloid slow cognitive decline in Alzheimer’s disease. Neuron 38:547–554

    Article  PubMed  CAS  Google Scholar 

  • Hohlfeld R, Kerschensteiner M, Stadelmann C, Lassmann H, Wekerle H (2000) The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis. J Neuroimmunol 107:161–166

    Article  PubMed  CAS  Google Scholar 

  • Hu GR, Walls RS Creasey et al. (1995): Peripheral blood lymphocytes subset distribution and function in patients with Alzheimer’s disease and other dementias. Aust NZ J Med 25:212–217

    CAS  Google Scholar 

  • Huberman M, Shalit F, Roth-Deri I et al. (1994) Correlation of cytokine secretion by mononuclear cells of Alzheimer patients and their disease stage. J Neuroimmunol 52:147–152

    Article  PubMed  CAS  Google Scholar 

  • Huberman M, Sredni B, Stern L, Kott E, Shalit F (1995) IL-2 and IL-6 secretion in dementia: correlation with type and severity of disease. J Neurol Sci 130:161–164

    Article  PubMed  CAS  Google Scholar 

  • Hüll M, Strauss S, Volk B et al. (1995) Interleukin-6 is present in early stages of plaque formation and it is restricted to the brains of Alzheimer’s disease patients. Acta Neuropathol (Berl) 89:544–551

    Article  Google Scholar 

  • Hüll M, Strauss S, Berger M, Volk B, Bauer J (1996) Inflammatory mechanisms in Alzheimer’s Disease. Eur Arch Psychiatry Clin Neurosci 246:124–128

    Article  PubMed  Google Scholar 

  • Ikeda T, Yamamoto K, Takahashi K (1991) Yamada M: Immune systemassociated antigens on the surface of peripheral blood lymphocytes in patients with Alzheimer’s disease. Acta Psychiatr Scand 83:444–448

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Shoji M, Yamaguchi E, Matsubara E et al. (1993) Diagnostic significance of skin immunolabelling with antibody against native cerebral amyloid in Alzheimer’s disease. Neurosci Lett 150:159–161

    Article  PubMed  CAS  Google Scholar 

  • Itagaki S, Akiyama H, Saito H, McGeer PL (1994): Ultrastructural localization of complement membrane attack complex(MAC)-like immunoreactivity in brains of patients with Alzheimer’s disease. Brain Res 645:78–84

    Article  PubMed  CAS  Google Scholar 

  • Ivins KJ, Thornton PL, Rohn TT, Cotman CW (999) Neuronal apoptosis induced by β-Amyloid is mediated by caspase-8. Neurobiol Dis 6:440–449

    Article  Google Scholar 

  • Janeway CA, Travers P, Walport M, Capra JD (eds): 1998) Host defense against infection. In: Immunobiology: the immune system in health and disease, Chapter 10. 4th edn. Elsevier, London, pp 363–416

    Google Scholar 

  • Jannsen JC, Godbolt AK, Joannisis P et al. (2004) The prevalence of oligoclonal bands in the CSF of patients with primary neurodegenerative dementia. J Neurol 251:184–188

    Article  Google Scholar 

  • Jantzen PT, Connor KE, DiCarlo G et al. (2002) Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci 22:2246–2254

    PubMed  CAS  Google Scholar 

  • Jayashankar L, Brasky KM, Ward JA, Attansio R (2003) Lymphocyte modulation in a baboon model of immunosenescence. Clin Diagn Lab Immunol 10:870–875

    Article  PubMed  Google Scholar 

  • Jellinger KA (2000) Cell death mechanism in Parkinson?s disease. J Neural Transm 107:1–29

    Article  PubMed  CAS  Google Scholar 

  • Joachim CL, Mori H, Selkoe DJ (1989) Amyloid β-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 341:226–230

    Article  PubMed  CAS  Google Scholar 

  • Jodo S, Kobayashi S, Kayagaki N et al. (1997) Serum levels of soluble Fas/APO-1 (CD95) and its molecular structure in patients with systemic lupus erythematosus (SLE) and other autoimmune diseases. J Exp Immunol 107:89–95

    Article  CAS  Google Scholar 

  • Jonakeit GM (1997) Cytokines in neuronal development. Adv Pharmacol 37:35–53

    Google Scholar 

  • Kakimura J, Kitamura Y, Takata K et al. (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16:601–603

    PubMed  CAS  Google Scholar 

  • Kalaria RN, Golde T, Cohen M, Younkin S (1991) Serum amyloid P in Alzheimer’s disease: Implications for dysfunction of the blood-brainbarrier. Ann NY Acad Sci; 640:145–149

    PubMed  CAS  Google Scholar 

  • Kalaria RN (1992) The blood brain barrier and cerebral microcirculation in Alzheimer’s disease. Cerebrovasc Brain Metab Rev 4:226–260

    PubMed  CAS  Google Scholar 

  • Kalaria RN (1993) The immunopathology of Alzheimer’s disease and some related disorders. Brain Pathol 3:333–347

    PubMed  CAS  Google Scholar 

  • Kalman J, Juhasz A, Laird G et al. (1997) Serum Il-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer’s disease. Acta Neurol Scand 96:236–240

    Article  PubMed  CAS  Google Scholar 

  • Karkos J (2004) Immuntherapie bei der Alzheimer-Krankheit. Fortschr Neurol Psychiatr 72:204–219

    Article  PubMed  CAS  Google Scholar 

  • Kasahara S (1988) The cytokine concept. Med Immunol 16:229–238

    Google Scholar 

  • Kell SH, Allman RM, Harrell LE, Liu T, Solvason N (1996) Association between Alzheimer’s disease and bound autochthonous IgM on T cells. J Am Geriatr Soc 44:1362–1365

    PubMed  CAS  Google Scholar 

  • Kendall MD, Al-Shawaf A, Zaidi SAA (1988) The cholinergic and adrenergic innervation of the rat thymus. In: Fossum S, Rolstad S (eds): Histophysiology of the immune system. Plenum, New York, pp 255–261

    Google Scholar 

  • Kendell RE (1991) Chronic fatigue, viruses and depression. Lancet 337:160–162

    Article  PubMed  CAS  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L et al. (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  PubMed  CAS  Google Scholar 

  • Kipnis J, Avidan H, Caspi RR, Schwartz M (2004) Dual effect of CD4+Cd25+ regulatory T cells in neurodegeneration: a dialogue with microglia. Proc Natl Acad Sci USA 101[Suppl 2]:14663–14669

    Article  PubMed  CAS  Google Scholar 

  • Kirchner H, Kleinicke C, Digel W (1982) A whole-blood technique for testing production of human interferon by leukocytes. J Immunol Methods 48:213–219

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Richter C, Berg PA: Antibodies against central nervous system tissue (anti-CNS) detected by ELISA and Western blotting: marker antibodies for neuropsychiatric manifestations in connective tissue disease. Autoimmunity; 10:133–144

    Google Scholar 

  • Klein R, Bänsch M, Berg PA (1991) Clinical relevance of antibodies against serotonin and gangliosides in patients with primary fibromyalgia syndrome. Psychoneuroendocrinology 17:593–598

    Article  Google Scholar 

  • Kollesch J, Nickel D (1979) Antike Heilkunst. Röderberg, Frankfurt/Main

    Google Scholar 

  • Kreutzberg GW: Microglia (1996) A sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  • Kuo YM, Kokjohn TA, Watson MD et al. (2000) Elevated Aβ42 in skeletal muscle of Alzheimer’s disease patients suggests peripheral alterations of APP metabolism. Am J Pathol 156:797–805

    PubMed  CAS  Google Scholar 

  • LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s Aβ peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9:21–30

    Article  PubMed  CAS  Google Scholar 

  • Lal H, Forster ML (1988) Autoimmunity and age-associated cognitive decline. Neurobiol Aging 9:733–742

    Article  PubMed  CAS  Google Scholar 

  • Lanzrein AD, Johnston PM, Perry VH, Jobst KA, King EM, Smith DA (1998) Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer’s disease: Interleukin-1β, Interleukin-6, Interleukin 1 receptor antagonist, tumor necrosis factor-α, the soluble tumor necrosis factor receptors I and II, and α1-antichymotrypsin. Alzheimer Dis Assoc Disord 12:215–227

    Article  PubMed  CAS  Google Scholar 

  • Larocca LM, Lauriola L, Ranelletti FO et al. (1990) Morphological and immunohistochemical study of Down syndrome thymus. Am J Med Genet Suppl. 7:225–230

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Bancher C, Breitschopf CJ et al. (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89:35–41

    Article  PubMed  CAS  Google Scholar 

  • Lautenschlager N, Kurz A, Müller U (1999) Erbliche Ursachen und Risikofaktoren der Alzheimer-Krankheit. Nervenarzt 70:195–205

    Article  PubMed  CAS  Google Scholar 

  • Leblhuber F, Walli J, Tilz GP, Wachter H, Fuchs, D (1998) Systemische Veränderungen des Immunsystems bei Patienten mit Alzheimer-Demenz. Dtsch Med Wschr 123:787–791

    Article  PubMed  CAS  Google Scholar 

  • Leffell MS, Lumsden L, Steiger WA (1985) An analysis of T-lymphocyte subpopulations in patients with Alzheimer’s disease. J Am Geriatr Soc 33:4–8

    PubMed  CAS  Google Scholar 

  • Lemere CA, Spooner ET, LaFrancois J et al. (2003) Evidence for peripheral clearance of cerebral Abeta protein following chronic, active Abeta immunization in PSAPP mice. Neurobiol Dis 14:10–18

    Article  PubMed  CAS  Google Scholar 

  • Lemke MR, Glatzel M, Henneberg AE (1997) Immunological alterations in Alzheimer’s disease: Antimicroglia antibodies in sera of Alzheimer patients. In: Henneberg AE, Kaschka WP (eds) Immunological alterations in psychiatric diseases. Adv Biol Psychiatry. Karger, Basel, Vol 18, pp 108–113

    Chapter  Google Scholar 

  • Leonardi A, Arata L, Bino GL, Farinelli M, Parodi C, Scudeletti M, Canonica GW (1989) Functional study of T lymphocyte responsiveness in patients with dementia of the Alzheimer type. J Neuroimmunol 22:1312–1316

    Article  Google Scholar 

  • Licastro F, Savorani G, Sarti G et al. (1990) Zinc and thymic hormonedependent immunity in normal ageing and in patients with senile dementia of the Alzheimer type. J Neuroimmunol 2:201–208

    Article  Google Scholar 

  • Licastro F, Pedrini S, Caputo L et al. (2000) Increased plasma levels of interleukin-1, interleukin-6, and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals form the brain? J Neuroimmunol 103:97–102

    Article  PubMed  CAS  Google Scholar 

  • Linke RP (1996) Amyloidosen. In: Peter HH, Pichler WJ (Hrsg) Klinische Immunologie. Urban & Schwarzenberg, München Wien Baltimore, S 822–833

    Google Scholar 

  • Lio D, Licastro F, Scola L et al. (2003) Interleukin-10 promoter polymorphism in sporadic Alzheimer’s disease. Genes Immun 234–238

    Google Scholar 

  • Lloberas J, Celada A (2002) Effect of aging on macrophage function. Exp Gerontol 37:1325–1331

    Article  PubMed  CAS  Google Scholar 

  • Lombardi VRM, Garcia M, Rey L, Cacabelos R (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s disease individuals. J Neuroimmunol 97:163–171

    Article  PubMed  CAS  Google Scholar 

  • Lopez OI, Rabin BS, Huff FJ, Rezek D, Reinmuth OM (1992) Serum autoantibodies in patients with Alzheimer’s disease and vascular dementia and in nondemented control subjects. Stroke 23:1078–1083

    PubMed  CAS  Google Scholar 

  • Lue LF, Walker DG, Rogers J (2001) Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures. Neurobiol Aging 22:945–956

    Article  PubMed  CAS  Google Scholar 

  • Lue LF, Walker DG (2002) Modeling Alzheimer’s disease immune therapy mechanisms: interactions of human postmortem microglia with antibody-opsonized amyloid-beta peptide. J Neurosci Res 70:599–610

    Article  PubMed  CAS  Google Scholar 

  • März P, Heese K, Hock C et al. (1997) Interleukin-6 (IL-6) and soluble forms of IL-6 receptors are not altered in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 239:29–32

    Article  PubMed  Google Scholar 

  • Maes M, DeVos N, Wauters A et al. (1999) Cytokine gene expression as a function of clinical progression of Alzheimer’s disease dementia. J Psychiatr Res 33:397–405

    Article  PubMed  CAS  Google Scholar 

  • Magnus T, Chan A, Savill J, Toyka KV, Gold R (2002) Phagocytic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J Neuroimmunol 130:1–9

    Article  PubMed  CAS  Google Scholar 

  • Marx F, Blasko I, Pavelka M, Grubeck-Lobenstein B (1998) The possible role of the immune system in Alzheimer’s disease. Exp Gerontol 33:871–881

    Article  PubMed  CAS  Google Scholar 

  • Marx F, Blasko I, Grubeck-Loebenstein B (1999) Mechanisms of immune regulation in Alzheimer’s disease: a viewpoint. Arch Immunol Ther Exp 47:205–209

    CAS  Google Scholar 

  • Masliniki W (1989) Cholinergic receptors of lymphocytes. Brain Behav Immunol 3:1–14

    Article  Google Scholar 

  • Matsuoka Y, Saito M, LaFrancois J et al. (2003) Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to beta-amyloid. J Neurosci 23:29–33

    PubMed  CAS  Google Scholar 

  • McDonald PP, Fadok VA, Bratton D; Henson PM (1999) Transcriptional and translational regulation of inflammatory mediator production by endogeneous TGF-μ in macrophages that have ingested apoptotic cells. J Immunol 163:6164–6172

    PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGeer EG (1989) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 107:341–346

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and antiinflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiological studies. Neurol 47:425–432

    CAS  Google Scholar 

  • McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2001) Inflammation, autotoxicity and Alzheimr’s disease. Neurobiol Aging 22:799–809

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 27:741–749

    Article  PubMed  CAS  Google Scholar 

  • McKhann G, Drachmann D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s Disease: Report of the NINCDSADRDA Work Group under auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  • McRae A, Ling EA, Wigander A, Dahlström A (1996) Microglial cerebrospinal fluid antibodies: Significance for Alzheimer’s disease. Mol Chem Neuropathol 28:89–95

    PubMed  CAS  Google Scholar 

  • Mecocci P, Polidori MC, Ingegni T et al. (1998) Oxidative damage to DNA in lymphocytes from AD patients. Neurology 51:1014–1017

    PubMed  CAS  Google Scholar 

  • Meda L, Baron P, Scarlato G (2001) Glial activation in Alzheimer’s disease: the role of Aμ and its associated proteins. Neurobiol Aging 22:885–893

    Article  PubMed  CAS  Google Scholar 

  • Menard L, Rola-Pleszczynski J (1987) Nicotine induces T-suppressor cells: modulation by the nicotinic antagonist D-tubocurarine and myastenic serum. Clin Immunol Immunopathol 44:107–113

    Article  PubMed  CAS  Google Scholar 

  • Menkin V (1928) Emotional relative mononucleosis. Am J Physiol 85:489–497

    Google Scholar 

  • Metalnikow S, Chorine V (1926) The role of conditioned reflexes in immunity. Ann Pasteur Inst 40:893–900

    Google Scholar 

  • Michaelson DM, Chapman J, Bachar O, Korczyn AD, Wertman E (1989) Serum antibodies to cholinergic neurons in Alzheimer’s disease. Prog Clin Biol Res 317:689–694

    PubMed  CAS  Google Scholar 

  • Mishto M, Santoro A, Bellavista E, Bonafe M, Monti D, Franseschi C (2003) Immunoproteasomes and immunosenescence. Ageing Res Rev 22:419–432

    Article  CAS  Google Scholar 

  • Misonou Z, Morishima-Kawashima M, Ihara Y (2000) Oxidative stress induces intracellular accumulation of amyloid-beta-protein (Abeta) in human neuroblastoma cells. Biochem 39:6951–6959

    Article  CAS  Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    Article  PubMed  CAS  Google Scholar 

  • Moalem G, Gdalyahu A, Shanbi Y et al. (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimm 15:331–345

    Article  CAS  Google Scholar 

  • Mönning U, Schreiter-Gasser U, Hilbich C et al. (1991) Alzheimer amyloid μ/A4 protein-reactive antibodies in human sera and CSF. In: Iqbal K, McLachlan D, Winblad B, Wisniewski H (eds) Alzheimer’s Disease: Biology, Diagnosis and Therapeutics. John Wiley & Sons, Chichester

    Google Scholar 

  • Mönning U, König G, Prior H et al. (1990) Synthesis and secretion of Alzheimer amyloid beta-A4 precursor protein by stimulated human peripheral blood leucocytes. FEBS Lett 277:261–266

    Article  PubMed  Google Scholar 

  • Mogi M, Harada M, Kondo T et al. (1996) The soluble form of Fas molecule is elevated in parkinsonian brain tissue. Neurosci Lett 220:195–198

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A, Maron A, Zota V, Selkoe DJ, Weiner HL (2001) Immune hyporesponsiveness to amyloid β-peptide in amyloid precursor protein transgenic mice: Implications for the pathogenesis and treatment of Alzheimer’s disease. Proc Natl Acad Sci USA 98:10273–10278.

    Article  PubMed  CAS  Google Scholar 

  • Monsonego A, Weiner HL (2003) Immunotherapeutic approaches to Alzheimer’s disease. Science 302:834–838

    Article  PubMed  CAS  Google Scholar 

  • Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: TH1, TH2 and more. Immunol Today 17:138–146

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Riedel M, Schwarz MJ (2004) Psychotropic effects of COX-2 inhibitors-a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 37:266–269

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Golstein P (1995) The Fas Death Factor. Science 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Nagga AD, Marcussion J (1998) Associated physical disease in a demented population. Aging Milano 10:440–444

    PubMed  CAS  Google Scholar 

  • Nandy K (1977) Immune reactions in aging brain and senile dementia. In: Nandy K, Sherwin I (eds) The Aging Brain and Senile Dementia. Plenum Press, New York Press, pp 181–196

    Google Scholar 

  • Neuber K, Schmidt S, Mensch A (2003) Telomere length measurement and determination of immunosenescence-related markers (CD28, CD45RO, CD45RA, interferon-gamma and interleukin 4) in skin-homing T cells expression the cutaneous lymphocyte antigen: indication of a non ageing T cell subset. Immunology 109:24–31

    Article  PubMed  CAS  Google Scholar 

  • Nevo U, Kipnis J, Golding I et al. (2003) Autoimmunity as a special case of immunity: removing threats from within. Trends Mol Med 9:88–93

    Article  PubMed  Google Scholar 

  • Nietzsche F (1886) Jenseits von Gut und Böse. Kröner, Stuttgart.

    Google Scholar 

  • Nijhuis E, VanDuijn CM, Witteman C, Hofman A, Rzing J, Nagelkerken L (1991) T cell reactivity in patients with Alzheimer’s disease. In: Iqbal K et al. (eds) Alzheimer’s disease: Basic Mechanisms, Diagnosis, and Therapeutic Strategies. Wiley & Sons, New York, pp 581–586

    Google Scholar 

  • Nishimura T, Akiyama H, Yonehara S et al.(1995) Fas antigen expression in brains of patients with Alzheimer-type dementia. Brain Res 695:137–145

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki H, Shimada Y, Sugita Y, Yamamoto T, Hasegawa T, Nabeshima T (1995) Decreased interleukin-6 level in cerebrospinal fluid of patients with Alzheimer-type dementia. Neurosci Lett 186:219–221

    Article  PubMed  Google Scholar 

  • Noda S, Richartz E, Schröder A, Batra A, Sarkar R, Bartels M, Buchkremer G, Schott K (1999) T-Lymphocyte Subpopulations and the increase of CD4/CD8 ratio in Alzheimer’s Disease. Z Gerontol Geriat 32Supp.3:230

    Google Scholar 

  • Ouyang Q, Cicek G, Westendorp RG, Cools HJ, van-der-Klis RJ (2000) Reduced IFN-gamma production in elderly people following in vitro stimulation with influenza vaccine and endotoxin. Mech Ageing Dev 121:131–137

    Article  PubMed  CAS  Google Scholar 

  • Owen AD, Schapira AHV, Jenner P Marsden CD (1997) Indices of oxidative stress in Parkinson’s disease, Alzheimer’s disease and dementia with Lewy bodies. J Neural Transm 51(Suppl):167–173

    CAS  Google Scholar 

  • Paganelli R, Di Iorio A, Patricelli L et al. (2002) Proinflammatory cytokines in sera of elderly patients with dementia: levels in vascular injury are higher than those of mild-moderate Alzheimer’s disease patients. Exp Gerontol 37:257–263

    Article  PubMed  CAS  Google Scholar 

  • Panossian LA, Porter VR, Valenzuela HF et al. (2003) Telomere shortening in T cells correlates with Alzheimer disease status. Neurobiol Aging 24:77–84

    Article  PubMed  CAS  Google Scholar 

  • Paresce DM, Ghosh RN, Maxfield FR (1996) Microglia internalize aggregates of the Alzheimer’s disease amyloid β-protein via scavenger receptor. Neuron 17:553–565

    Article  PubMed  CAS  Google Scholar 

  • Park E, Alberti J, Mehta P et al. (2000) Partial impaired immune functions in peripheral blood leukocytes from aged men with Down’s Syndrome. Clin Immunol 95:62–69

    Article  PubMed  CAS  Google Scholar 

  • Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ: Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2005, 2:9.

    Google Scholar 

  • Pavelec G, Adibzadeh M, Pohla H, Schaut K (1995) Immunosenescence: ageing of the immune system. Immunol Today 16:420–422

    Article  Google Scholar 

  • Perusini G (1911) Über klinische und histopathologische eigenartige psychische Erkrankungen des späteren Lebensalters. In: Nissl F, Alzheimer A (Hrsg): Histopathologische Arbeiten über die Großhirnrinde unter besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten. Leipzig, 3. Bd. S 297–351

    Google Scholar 

  • Peterson C, Gibson GE, Blass JP (1985) Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer’s disease. N Engl J Med 312:1063–1065

    Article  PubMed  CAS  Google Scholar 

  • Pirttilä T, Mattinen S, Frey H (1992) The decrease of CD8-positive lymphocytes in Alzheimer’s disease. J Neurol Sci 170:160–165

    Article  Google Scholar 

  • Popovic M, Caballero-Bleda M, Puelles L, Popovic N (1998) Importance of immunological and inflammatory processes in the pathogenesis and therapy of Alzheimer’s disease. Int J Neurosci 95:203–236

    PubMed  CAS  Google Scholar 

  • Potestio M, Pawalec G, Di Lorenzo G et al. (1999) Age-related changes in the expression of CD95 (APO1/FAS) on blood lymphocytes. Exp Gerontol 34:659–673

    Article  PubMed  CAS  Google Scholar 

  • Quam N, Herkenham M (2002) Connecting cytokines and brain: a review of current issues. Histopathology 17:273–288

    Google Scholar 

  • Quinn J, Montine T, Morrow J, Woodward WR, Kulhanek D, Eckenstein F (2003) Inflammation and cerebral amyloidosis are disconnected in an animal model of Alzheimer’s disease. J Neuroimmunol 137:32–41

    Article  PubMed  CAS  Google Scholar 

  • Raine CS (2000) Inflammation in Alzheimer’s disease: a view from the periphery. Neurobiol Aging 21:437–440

    Article  PubMed  CAS  Google Scholar 

  • Reale M, Iarlori C, Gambi F et al. (2004) Treatment with acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J Neuroimmunol 148:162–171

    Article  PubMed  CAS  Google Scholar 

  • Reischies FM, Geiselmann B, Gener R et al. (1997) Demenz bei Hochbetagten. Ergebnisse der Berliner Altersstudie. Nervenarzt 68:719–729

    Article  PubMed  CAS  Google Scholar 

  • Richartz E, Noda S, Wormstall H, Schott K (1999) Alterations of Cytokine levels in Alzheimer’s Disease. Exp Clin Endocrinol 107:A 32–33

    Google Scholar 

  • Richartz E, Noda S, Schott K, Günthner A, Lewczuk P, Bartels M (2002) Increased serum levels of CD95 in Alzheimer’s disease. Dement Geriatr Cogn Disord 13:178–182

    Article  PubMed  CAS  Google Scholar 

  • Richartz E, Klein R, Stransky E et al. (2004) Autoantibody reactivity in serum and cerebrospinal fluid of patients with Alzheimer’s disease. Neurol Psychiat Brain Res 11:145–148

    Google Scholar 

  • Richartz E, Batra A, Stransky E, Wormstall H, Bartels M, Buchkremer G, Schott K (2005a) Diminished production of proinflammatory cytokines in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 19:184–188

    Article  PubMed  CAS  Google Scholar 

  • Richartz E, Stransky E, Batra A, Lewczuk P, Bartels M, Schott K (2005b) Decline of immune responsiveness: A pathogenetic factor in Alzheimer’s disease? J Psychiatr Res 39:535–543

    Article  PubMed  Google Scholar 

  • Richartz-Salzburger E, Batra A, Stransky E et al. (2007) Altered lymphoycyte distribution in Alzheimer’s disease. J Psychiatr Res 41:174–178

    Article  PubMed  Google Scholar 

  • Rogers J, Luber-Narod J, Styren SD, Civin WH (1988: Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Lue LF (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phemomena in Alzheimer’s disease. Neurochem Int 39:333–340

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Strohmeyer R, Kovolowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia 40:260–269

    Article  PubMed  Google Scholar 

  • Romeu MA, Meste L, Gonzalez A et al (1992) Lymphocyte immunophenotyping by flow cytometry in normal adults: comparison of fresh whole blood lysis technique, Ficoll-Paque separation and cryopreservation. J Immunol Methods 154:7–10

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg RN, Baskin F, Fosmire JA et al. (1997) Altered amyloid precursor processing in platelets of patients with Alzheimer’s disease. Arch Neurol 54:139–144

    PubMed  CAS  Google Scholar 

  • Rubin LL, Gatchalian CL, Rimon G, Brooks SF (1994) The molecular mechanisms of neuronal apoptosis. Curr Opin Neurobiol 4:696–702

    Article  PubMed  CAS  Google Scholar 

  • Saag KG, Rubenstein LM, Christchilles EA et al. (1995) Nonsteroidal anti-inflammatory drugs and cognitive decline in the elderly. J Rheumatol 22:2142–2147

    PubMed  CAS  Google Scholar 

  • Saas P, Boucraut J, Quiquerez AL et al. (1999) CD95 as a receptor governing apoptotic or inflammatory responses:a key role in brain inflammation? J Immunol 162:2326–2333

    PubMed  CAS  Google Scholar 

  • Sala G, Galimberti G, Canevari C et al. (2004) Peripheral cytokine release in Alzheimer patients: correlation with disease severity. Neurobiol Aging 24:909–914

    Article  CAS  Google Scholar 

  • Sandbrink R, Hartmann T, Masters CL et al. (1996) Genes contributing to Alzheimer’s disease. Mol Psychiat 1:27–40

    CAS  Google Scholar 

  • Saurwein-Teissl M, Blasko I Zistere K et al. (2000) An imbalance between pro-and antiinflammatory cytokines, a characteristic feature of old age. Cytokine 12:1160–1161

    Article  PubMed  CAS  Google Scholar 

  • Schenk D, Barbour R, Dunn W et al. (1999) Immunization with amyloidbeta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  PubMed  CAS  Google Scholar 

  • Schindowski K, Leutner S, Müller WE, Eckert A (2000) Age-related changes of apoptotic cell death in human lymphocytes. Neurobiol Aging 21:661–670.

    Article  PubMed  CAS  Google Scholar 

  • Schindowski K, Fröhlich L, Maurer K, Müller WE, Eckert A (2002) Agerelated impairment of human T lymphocytes’ activation: specific differences between CD4(+) and CD8(+) subsets. Mech Ageing Dev 123:375–390

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TL, Steger MM, Pavelka M, Grubeck-Loebenstein B (1997) Interactions of the Alzheimer β-amyloid fragment (25–35) with peripheral blood dendritic cells. Mech Ageing 94:223–232

    Article  CAS  Google Scholar 

  • Schott K, Wormstall H, Dietrich M, Klein R, Batra A (1996) Autoantibody reactivity in serum of patients with ‘Alzheimer’s disease and other agerelated dementias. Psychiatry Res 59:251–25

    Article  PubMed  CAS  Google Scholar 

  • Schott K, Batra A, Richartz E, Sarkar R, Bartels M, Buchkremer G (1997) Serumantibodies to brain lipids in mental disorders. Neurol Psychiatry Brain Res 5:31–34

    Google Scholar 

  • Schwartz M, Cohen IR (2000) Autoimmunity can benefit selfmaintenance. Immunol Today 21:265–268

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M (2001) Harnessing the immune system for neuroprotection: therapeutic vaccines for acute and chronic neurodegenerative disorders. Cell Mol Neurobiol 21:617–627

    Article  PubMed  CAS  Google Scholar 

  • Schwarz MJ, Chiang S, Müller N et al. (2001) T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 15:340–370

    Article  PubMed  CAS  Google Scholar 

  • Scott RB (1993) Extraneuronal manifestations of Alzheimer’s disease. J Am Geriatr Soc 41:268–276

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid-β-protein. J Alzheimer Dis 3:75–81

    CAS  Google Scholar 

  • Sengun IS, Appel SH (2003) Serum anti-Fas antibody levels in amyotrophic lateral sclerosis. J Neuroimmunol 142:137–140

    Article  PubMed  CAS  Google Scholar 

  • Serot JM, Béné MC, Gobert B, Christmann D, Leheup B, Fauré GC (1992) Antibodies to chorioid plexus in senile dementia of Alzheimer’s type. J Clin Pathol 45:781–783

    Article  PubMed  CAS  Google Scholar 

  • Shaffer ÖM, Dority MD, Grupta-Bausal R et al. (1995) Amyloid beta protein removal by neuroglial cells in culture. Neurobiol Aging 16:737–745

    Article  PubMed  CAS  Google Scholar 

  • Shalit F, Sredni B, Brodie C, Kott E, Huberman M (1995) T lymphocyte subpopulations and activation markers correlate with severity of Alzheimer’s disease. Clin Immun Immunpath 75:246–250

    Article  CAS  Google Scholar 

  • Shen Y, Meri S (2003) Yin and Yang: complement activation and regulation in AD. Prog Neurobiol 70:463–472

    PubMed  CAS  Google Scholar 

  • Shibata M, Yamada S, Kumar S et al. (2000) Clearance of Alzheimer’s amyloid-β1–40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    PubMed  CAS  Google Scholar 

  • Shinitzky M, Deckman M, Kessler A et al. (1991) Platelet autoantibodies in dementia and schizophrenia. Possible implication for mental disorders. Ann NY Acad Sci 621:205–217

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson EM (2006) Immunotherapy for conformational disease. Current pharmaceutical design 12: 2569–2585

    Article  PubMed  CAS  Google Scholar 

  • Siegel RM, Fleischer TA (1999) The role of Fas and related death receptors in autoimmune and other disease states. J Allergy Clin Immunol 103:729–738

    Article  PubMed  CAS  Google Scholar 

  • Sievers J, Parwaresch R, Wottge HU (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12:245–258

    Article  PubMed  CAS  Google Scholar 

  • Singh VK (1990) Neuroimmune axis as a basis of therapy in Alzheimer’s disease. Prog Drug Res 34:383–393

    PubMed  CAS  Google Scholar 

  • Singh VK (1994) Studies of neuroimmune markers in Alzheimer’s disease. Molecular Neurobiology 9:73–81

    PubMed  CAS  Google Scholar 

  • Singh VK (1997) Neuroautoimmunity: Pathogenetic implications for Alzheimer’s disease. Gerontology 43:79–94

    PubMed  CAS  Google Scholar 

  • Singh VK, Guthikonda P (1997) Circulating Cytokines in Alzheimer’s disease. J Psychiat Res 31:657–660

    Article  PubMed  CAS  Google Scholar 

  • Skias D, Bania M, Reder D, Luchins D, Antel JP (1985) Senile dementia of Alzheimer’s type (SDAT): reduced T8-cell-mediated suppressor activity. Neurology 35:1635–1638

    PubMed  CAS  Google Scholar 

  • Silverberg G, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511

    Article  PubMed  Google Scholar 

  • Soininen H, Heinonen O, Hallikainen M et al. (1993) Circulating immune complexes in sera from patients with Alzheimer’s disease and subjects with age-associated memory impairment. J Neural Transm [p-D Sect] 6:179–188

    Article  CAS  Google Scholar 

  • Solerte SB, Cravello L, Ferrari E, Fioravanti M (2000) Overproduction of IFNy and TNFa from Natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann N Y Acad Sci 917:331–340

    Article  PubMed  CAS  Google Scholar 

  • Sommer N, Löschmann PA, Northoff GH et al. (1995) The antidepressant rolipram suppresses cytokine production and prevents autoimmune encephalitis. Nat Med 1:224–248

    Article  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2001) Microglia and macrophages in the developing CNS. Neurotoxicology 22:619–624

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    Article  PubMed  Google Scholar 

  • Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuro Report 5:2529–2533

    CAS  Google Scholar 

  • Sulger J, Dumais Huber C, Zerfass R et al. (1999) The calcium response of human T lymphocytes is decreased in aging but increased in Alzheimer dementia. Biol Psychiatry 45:737–742

    Article  PubMed  CAS  Google Scholar 

  • Szczepanik AM, Funes S, Petko W, Ringheim GE (2001) IL-4, IL-10, and IL-13 modulate Aβ(1–42)-induced cytokine and chemokine production in primary murine microglia and human monocyte cell line. J Neuroimmunol113:49–62

    Article  PubMed  CAS  Google Scholar 

  • Tamul KR, Schmitz JL, Kane K, Folds JD (1995) Comparison of the effects of Ficoll-Hypaque separation and whole blood lysis on results of immunophenotypic analysis of blood and bone marrow samples from patients with hematologic malignancies. Clin Diagn Lab Immunol 2:337–342

    PubMed  CAS  Google Scholar 

  • Tarkowski E, Rosengren L, Blomstrand C, Jensen C, Ekholm S, Tarkowski A (1999a) Intrathecal Expression of Proteins Regulating Apoptosis in Acute Stroke. Stroke 30:321–327

    PubMed  CAS  Google Scholar 

  • Tarkowski E, Blennow K, Wallin A, Tarkowski A (1999b) Intracerebral production of tumour necrosis factor-α, a local neuroprotective agent in Alzheimer’s disease and vascular dementia. J Clin Immunol 19:223–230

    Article  PubMed  CAS  Google Scholar 

  • Tarkowski E, Liljeroth AM, Nilsson A Minthon L, Blennow K (2001) Decreased levels of interleukin 1 receptor antagonist in Alzheimer’s disease. Dement Geriatr Cogn Disord 12:314–317

    Article  PubMed  CAS  Google Scholar 

  • Tasat DR, Mancusco R, O’Connor S, Molinari B (2003) Age-dependent change in reactive oxygen species and nitric oxide generation by rat alveolar macrophages. Aging Cell 2:159–164

    Article  PubMed  CAS  Google Scholar 

  • Tavalato B, Argenterio V (1980): Immunological indices in presenile Alzheimer’s disease. J Neurol Sci 46:325–331

    Article  Google Scholar 

  • Tayebati SK, Amenta F, Amici S et al. (2001) Peripheral blood lymphocytes muscarinic cholinergic receptor subtypes in Alzheimer’s disease: a marker of cholinergic dysfunction? J Neuroimmunol 121:126–131

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Carugati A, Fadok A et al. (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192:359–366

    Article  PubMed  CAS  Google Scholar 

  • Togo T, Akiyama H, Iseki E et al. (2002) Occurrence of T cells in the brain of Alzheimer’s disease. J Neuroimmunol 124:83–92

    Article  PubMed  CAS  Google Scholar 

  • Tollefson GE, Godes M, Warren JB, Hans E, Luxenberg H, Garvey M (1989) Lymphopenia in primary degenerative dementia. J Psychiatr Res 23:191–199

    Article  PubMed  CAS  Google Scholar 

  • Torack RM (1986) T-lymphocyte function in Alzheimer’s disease. Neurosci Lett 71:365–369

    Article  PubMed  CAS  Google Scholar 

  • Townsend KP, Town T, Mori T et al. (2005) CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid betapeptide. Eur J Immunol 35:901–910

    Article  PubMed  CAS  Google Scholar 

  • Trebst C, Staugaitis SM, Kivisakk P et al. (2003) CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. Am J Pathol 162:427–438

    PubMed  CAS  Google Scholar 

  • Trieb K, Ransmayr G, Sgonc R, Lassmann H, Grubeck-Loebenstein B (1996) APP peptides stimulate lymphocyte proliferation in normals, but not in patients with Alzheimer’s disease. Neurobiol Aging 17:541–547.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K, Fukui Y, Kageyama H (1994) Amyloid β protein-induced neuronal cell death: neurotoxic properties of aggregated amyloid-β protein. Brain Res 639:240–244

    Article  PubMed  CAS  Google Scholar 

  • Ueki A, Shinjo H, Nakajima T et al. (1999) A follow-up study on the outcome and relevant factors in senile dementia of Alzheimer’s type and vascular dementia. Nippon Ronen Igakkai Zasshi 36:358–364

    PubMed  CAS  Google Scholar 

  • Van Beek J, Elward K, Gasque P (2003) Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann NY Acad Sci 992:56–71

    PubMed  Google Scholar 

  • Van Duijn CM, Hofman A, Nagelkerken L (1990) Serum levels of interleukin-6 are not elevated in patients with Alzheimer’s disease. Neurosci Lett 108:350–354

    Article  PubMed  Google Scholar 

  • Vagnucci AH Jr, Li WW (2003) Alzheimer’s disease and angiogenesis. Lancet 361: 605–608

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Schachter F, Uchida I et al. (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667

    PubMed  CAS  Google Scholar 

  • Vella AT, Dow S, Potter TA, Kappler J, Marrack P (1998) Cytokineinduced survival of activated T cells in vitro and in vivo. Proc Natl Acad Sci U.S.A. 95:3810–3815

    Article  PubMed  CAS  Google Scholar 

  • Volicier L (2001) Management of severe Alzheimer’s disease and end-of-life-issues. Clin Geriatr Med 17:377–391

    Article  Google Scholar 

  • Vuitton DA, de Wazieres B, Dupond JL (1999) Psychoimmunology: a questionable model? Rev Med Interne 20:934–946

    PubMed  CAS  Google Scholar 

  • Wada-Isoe K, Wakutani Y, Urakami K, Nakashima K (2004) Elevated interleukin-6 levels in cerbrospinal fluid of vascular dementia patients. Acta Neurol Scand 110:124–127

    Article  PubMed  CAS  Google Scholar 

  • Weggen S, Eriksen JL, Das P et al. (2001) A subsets of NSAIDS lower amyloidogenic A-beta-42 independently of cyclooxygenase acitivity. Nature 414:212–216

    Article  PubMed  CAS  Google Scholar 

  • Weiner MF, Vobach S, Olsson K, Svetlik D, Risser R (1997) Cortisol secretion and Alzheimer’s disease progression. Biol Psychiatry 42:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Weizman R, Nathaniel L, Podliszewski E, Notti I, Djaldetti M, Bessler H (1995) Cytokine production in major depressed patients before and after clomipramine treatment. Biol Psychiatry 34:42–47

    Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277

    Article  Google Scholar 

  • Weksler ME, Relkin N, Turkenich R, La Russe S, Zhou L Szabo P (2002) Patients with Alzheimer’s disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol 37:943–948

    Article  PubMed  CAS  Google Scholar 

  • Wen GY, Wisnewski HM, Blondal H et al. (1994) Presence of non-fibrillar amyloid beta protein in skin biopsies of Alzheimer’s disease (AD), Down’s Syndrome and non-AED normal persons. Acta Neuropathol (Berl) 88:201–206

    Article  PubMed  CAS  Google Scholar 

  • Wernicke TF, Reischies FM (1994): Prevalence of dementia in old age: clinical diagnoses in subjects aged 85 years and older. Neurology 44:250–253

    PubMed  CAS  Google Scholar 

  • Wikby A, Ferguson F, Forsey R et al. (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci. 60:556–565

    PubMed  Google Scholar 

  • Wilcock DM, Munireddy SK, Rosenthal A, Egen KE, Gordon MN, Morgan D (2003a) Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 15:11–20

    Article  CAS  Google Scholar 

  • Wilcock DM, DiCarlo G, Henderson D et al. (2003b) Intracranially administered anti-Aβ antibodies reduce β-amyloid deposition by mechanism both independent of and associated with microglia activation. J Neurosci 23:3745–3751

    PubMed  CAS  Google Scholar 

  • Wilson CG, Finch CE, Cohne HJ (2002) Cytokines and cognition-The case for a head to toes inflammatory paradigm. JAGS 50:2041–2056

    Article  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17:278–282

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski T, Sigurdsson EM (2002) Immunization treatment approaches in Alzheimer’s and prion diseases. Curr Neurol Neurosci Rep 2:400–404

    Article  PubMed  Google Scholar 

  • Woiciechowsky C, Schöning B, Lanksch WR, Volk H-D, Döcke W-D (1999) Mechanisms of brain-mediated systemic anti-inflammaory syndrome causing immunodepression. J Mol Med 77:769–780

    Article  PubMed  CAS  Google Scholar 

  • Wolf SA, Fisher J, Bechmann I, Steiner B, Kwidzinski E, Nitsch R (2002) Neuroprotection by T-cells depends on their subtype and activation state. J Neuroimmunol 133:72–80

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease-a double-edged sword. Neuron 35:419–432

    Article  PubMed  CAS  Google Scholar 

  • Yaar M, Zhai S, Pilch PF et al. (1997) Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer’s disease. J Clin Invest 100:2333–2240

    PubMed  CAS  Google Scholar 

  • Yamada K, Kono K, Umegaki H et al. (1995) Decreased interleukin-6 level in cerebrospinal fluid of patients with Alzheimer-type dementia. Neurosci Lett 186:219–221

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Saito H, Nishiyama N (1994) Thymectomy-induced deterioration of learning and memory in mice. Brain Res 58:127–134

    Article  Google Scholar 

  • Zhang J, Kong Q, Zhang Z, Ge P, Ba D, He W (2003) Telomere dysfunction of lymphocytes in patients with Alzheimer’s disease. Cogn Behav Neurol 16:170–176

    Article  PubMed  Google Scholar 

  • Zhao B, Schwartz JP (1998) Involvements of cytokines in normal CNS development and neurological diseases: Recent progress and perspectives. J Neurosci Res 52:7–16

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV (2004) Clearing amyloid through the blood-brain-barrier. J Neurochem 89:807–811

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Steinkopff Verlag

About this chapter

Cite this chapter

(2008). Literaturverzeichnis. In: Psychoimmunologische Forschung bei Alzheimer-Demenz. Monographien aus dem Gesamtgebiete der Psychiatrie, vol 114. Steinkopff. https://doi.org/10.1007/978-3-7985-1787-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1787-5_7

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1786-8

  • Online ISBN: 978-3-7985-1787-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics