Advertisement

Finite-Element-Analysis of a Cemented Ceramic Femoral Component in Total Knee Arthroplasty

  • Christine Schultze
  • D. Klüß
  • A. Lubomierski
  • K.-P. Schmitz
  • R. Bader
  • Wolfram Mittelmeier
Conference paper
Part of the Ceramics in Orthopaedics book series (CIO)

Abstract

The femoral components of total knee replacement are generally made of metal and are mainly implanted with bone cement. Common complications in total knee arthroplasty (TKA) include abrasive wear, malpositioning and material fatigue [2]. In comparison to metal, ceramic components provide a better biocompatibility as well as higher scratch and wear resistance. Laboratory tests showed a decrease in the wear debris rate with the bearing couple ceramic-on-polyethylene to more than one third compared to the couple metal-on-polyethylene [1,9]. Another benefit of ceramic implants also exists in the avoidance of allergic reactions in comparison to metal. A disadvantage of ceramic implants is the low fracture toughness respectively the brittle characteristics [19]. Hence the risk of implant damage resulting from stress peaks has to be minimised by an optimal load transmission in the adjacent bone stock. The load transmission also influences the long-time behaviour of the bone cement. Local cement breakage and cement wear debris induce inflammatory reactions, which can finally lead to aseptic loosening [11,4].

Keywords

Total Knee Arthroplasty Femoral Component Bone Cement Total Knee Replacement Cement Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansorge S, Bader R, Mittelmeier W. Knieendoprothesen aus Keramik–eine Alternative?. Ärztliches Journal Orthopädie 2006; 4: 34–35.Google Scholar
  2. 2.
    Bader R, Mittelmeier W, Steinhauser E. Versagensanalyse von Knieendoprothesen: Grundlagen und methodische Ansätze zur Schadensanalyse. Orthopäde 2006; 35: 896–903.PubMedCrossRefGoogle Scholar
  3. 3.
    Beilas P, Papaioannou G, Tashman S, Yang KH. A new method to investigate in vivo knee behaviour using a finite element model of the lower limb. J Biomech 2004; 37:1019–1030.CrossRefGoogle Scholar
  4. 4.
    Breusch SJ, Schneider U, Kreutzer J, Ewerbeck V, Lukoschek M. Einfluß der Zementiertechnik auf das Zementierergebnis am koxalen Femurende. Orthopäde 2000; 29: 260–270.PubMedGoogle Scholar
  5. 5.
    CeramTec AG. BIOLOX® delta — Eine neue Keramik für die Orthopädie. Firmeninformationsschrift 10/2004.Google Scholar
  6. 6.
    Cook SD, Thomas KA. Fatigue failure of noncemented porous-coated implants. J Bone Joint Surg 1991; 73-B: 20–24.Google Scholar
  7. 7.
    D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr. The Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty. Clin Orthop Relat Res 2005; 440: 45–49.PubMedCrossRefGoogle Scholar
  8. 8.
    D’Lima et al. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty 2006; 21(2): 255–262.PubMedCrossRefGoogle Scholar
  9. 9.
    Greenwald S, Garino JP. Alternative Bearing Surfaces: The Good, the Bad, and the Ugly. J Bone Joint Surg 2001; 83-A: 68–72.PubMedGoogle Scholar
  10. 10.
    Huang CH, Yang CY, Cheng CK. Fracture of the femoral component associated with polyethylene wear and osteolysis after total knee athroplasty. J Arthroplasty 1999; 14: 375–379.PubMedCrossRefGoogle Scholar
  11. 11.
    Jacobs JJ, Hallab NJ, Skipor AK, Urban RM. Metal Degradation Products. Clin Orthop Relat Res 2003; 417: 139–147.PubMedGoogle Scholar
  12. 12.
    Klüß et al. Finite-Elemente-Untersuchung zur Impingement-bedingten Schädigung von Implantaten für den Hüftgelenkersatz. Materialprüfung 2007. in print.Google Scholar
  13. 13.
    Rack et al. A new ceramic material for orthopedics. J Biomech 2006; 39: 1371–1382.CrossRefGoogle Scholar
  14. 14.
    Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 1995; 17: 347–355.PubMedCrossRefGoogle Scholar
  15. 15.
    Simpson PMS, Dall GF, Breusch SJ, Heisel C. In-vitro-Freisetzung von Antibiotika aus SmartSet HV-und Palacos-R Knochenzement und deren Einfluss auf die mechanischen Eigenschaften. Orthopäde 2005; 34: 1255–1262.PubMedCrossRefGoogle Scholar
  16. 16.
    Ueno M, Apgar M, Sarin V. Mechanical stress analysis and burst testing of zirconia femoral component for total knee arthroplasty. Key Eng Mat 2002; 218–220: 573–576.CrossRefGoogle Scholar
  17. 17.
    Van Lenthe GH, De Waal Malefijt MC, Huiskes R. Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone and Joint Surg, 1997; 79: 117–122.CrossRefGoogle Scholar
  18. 18.
    Wada M, Imura S, Bo H, Baba H, Miyazaki T. Stress fracture of the femoral component in total knee replacement: a report of 3 cases. Int Orthop 1997; 21: 54–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Willmann G. Investigation of explanted hip and acetabulum hip prostheses. Biomed Tech 2001; 46: 343–350.CrossRefGoogle Scholar
  20. 20.
    Zacharias T. Präoperative biomechanische Berechnung von Femur-Hüftendoprothesen-Systemen zur Ermittlung der individuellen Primärstabilität nach Roboterimplantation. Dissertation, Universität Rostock 2000.Google Scholar

Copyright information

© Steinkopff Verlag 2007

Authors and Affiliations

  • Christine Schultze
    • 1
  • D. Klüß
  • A. Lubomierski
  • K.-P. Schmitz
  • R. Bader
  • Wolfram Mittelmeier
    • 2
  1. 1.Institute for Biomedical EngineeringUniversity of RostockRostockGermany
  2. 2.Department of OrthopaedicsUniversity of RostockRostockGermany

Personalised recommendations