Skip to main content
  • 728 Accesses

Auszug

Sowohl die primäre Infektion der Lunge als auch deren inflammatorische Mitreaktion bei extrapulmonalem Sepsisherd können Ursachen des septischen Lungenversagens sein, das eine über die Jahre unverändert hohe Sterblichkeit aufweist. Dazu kann eine beatmungsinduzierte Lungenschädigung (VALI) das septische Lungenversagen aggravieren. Neben der kausalen Therapie der Sepsis stehen für die Behandlung des septischen Lungenversagens Maßnahmen zur Verfügung, die von der Flüssigkeitsrestriktion über die 4-Seitenlagerung bis hin zur protektiven Beatmung reichen. Protektive Beatmung umfasst niedrige Tidalvolumina, permissive Hyperkapnie, inspiratorische Plateaudrücke unter 30 cm H2O und erhöhten PEEP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Goss CH, Brower RG, Hudson LD et al (2003) Incidence of acute lung injury in the United States. Crit Care Med 31:1607–1611

    Article  PubMed  Google Scholar 

  2. Schwarz MI, Albert RK (2004) “Imitators” of the ARDS. Implications for diagnosis and treatment. Chest 125: 1530–1535

    Article  PubMed  Google Scholar 

  3. Brun-Buisson C, Minelli C, Bertolini G et al (2004) Epidemiology and outcome of acute lung injury in European intensive care units. Results from ALIVE study. Intensive Care Med 30:51–61

    Article  PubMed  Google Scholar 

  4. Monchi M, Bellenfant F, Cariou A et al (1998) Early predictive factors of survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med 158:1076–1081

    PubMed  CAS  Google Scholar 

  5. Tentlow Chest 2001

    Google Scholar 

  6. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS) 1983–1993. JAMA 273:306–309

    Article  PubMed  CAS  Google Scholar 

  7. Stapleton RD, Wang BM, Hudson LD et al (2005) Causes and timing of death in patients with ARDS. Chest 128:523–553

    Article  Google Scholar 

  8. Vincent ICM 2003

    Google Scholar 

  9. Bernard GR, Artigas A, Brigham KL et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcome, and clinical trail coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  10. Gattinoni L, Pelosi P, Suter P et al (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Rspir Crit Care Med 158:3–11

    CAS  Google Scholar 

  11. Pelosi P, D’Ònofrio D, Chiumello D et al (2003) Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J 22(Suppl 42):48s–56s

    Article  Google Scholar 

  12. Albaiceta GM, Taboada F (2005) Pressure-volume loops in ARDS: further evidence of differences between pulmonary and extrapulmonary origin. Intensive Care 12:73–80

    Google Scholar 

  13. Dellinger RP, Carlet JM, Masur H et al (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med32:858–873

    Article  PubMed  Google Scholar 

  14. Schuster DP (1995) What is the acute lung injury? What is ARDS? Chest 107:1721–1726

    PubMed  CAS  Google Scholar 

  15. Benzing A, Mols G, Geiger K (2001) Flüssigkeitstherapie bei akutem Lungenversagen. Intensivmed 38:690–698

    Article  Google Scholar 

  16. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    PubMed  CAS  Google Scholar 

  17. Sevransky JE, Levy MM, Marini JJ (2004) Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit Care Med 32 (Suppl):S548–S553

    Article  PubMed  Google Scholar 

  18. Gattinoni L, Tognoni G, Pesenti A et al (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345: 568–573

    Article  PubMed  CAS  Google Scholar 

  19. Beuret P, Carton MJ, Nourdine K et al (2002) Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 28:564–569

    Article  PubMed  Google Scholar 

  20. McAuley DF, Gies S, Fichter H et al (2002) What is the optimal duration of ventilation in the prone position in acute lung injury and acute respiratory distress syndrome? Intensive Care Med 28:414–418

    Article  PubMed  CAS  Google Scholar 

  21. Gainnier M, Michelet P, Thirion X et al (2003) Prone positioning and positive end-expiratory pressure in acute respiratory distress syndrome. Crit Care Med31:2719–2726

    Article  PubMed  Google Scholar 

  22. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116: 9S–15S

    Article  PubMed  CAS  Google Scholar 

  23. Terragni PP, Rosboch GL, Lisi A et al (2003) How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J 22(Suppl 42): 15S–21S

    Article  Google Scholar 

  24. Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22:1568–1578

    Article  PubMed  CAS  Google Scholar 

  25. Ranieri VM, Suter PM, Tortorella C et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome. A randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  26. Amato MBP, Barbas CSV, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  27. 27. ARDS Network Trial (2000) Ventilation with lower tidal volume as compared with traditional volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  28. Gajic O, Dara SI, Mendez JL et al (2004) Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32:1817–1824

    Article  PubMed  Google Scholar 

  29. Gajic O, Frutos-Vivar F, Esteban A et al (2005) Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanivally ventilated patients. Intensive Care Med 31:922–926

    Article  PubMed  Google Scholar 

  30. Wrigge H, Uhlig U, Zinserling J et al (2004) The effect of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98:775–781

    Article  PubMed  Google Scholar 

  31. Ranieri VM, Zhang H, Mascia L et al (2000) Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    Article  PubMed  CAS  Google Scholar 

  32. Grasso S, Terragni P, Mascia L et al (2004) Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 32:1018–1027

    Article  PubMed  Google Scholar 

  33. Rouby JJ, Lu Q, Vieira S (2003) Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respr J 22(Suppl 42):27S–36S

    Article  Google Scholar 

  34. Maggiore SM, Richard JC, Brochard L (2003) What das been learnt from P/V curves in patients with acute lung injury/acute respiratory distress syndrome. Eur Respir J 22(Suppl 42):22S–26S

    Article  Google Scholar 

  35. Albaiceta GM, Luyando LH, Parra D et al (2005) Inspiratory vs expiratory pressure-volume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 31:1370–1378

    Article  PubMed  Google Scholar 

  36. The National Heart, Lung, and Blood Institute ARDS Clinical Trials Network (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351: 327–336

    Article  Google Scholar 

  37. Lu Q, Rouby JJ (2000) Measurement of pressure-volume curves in patients on mechanical ventilation. Minerva Anestesiol 66:367–375

    PubMed  CAS  Google Scholar 

  38. Smiseth OA, Thomoson CR, Ling H et al (1996) A potential clinical method for calculating transmural left ventricular filling pressure during positive end-expiratory pressure ventilation: a intraoperative study in humans. J Am Coll Cardiol 27:155–160

    Article  PubMed  CAS  Google Scholar 

  39. Engelmann L (2004) Rechtsherzfunktion bei ARDS und maschineller Beatmung. Internist 45:1147–1154

    Article  PubMed  CAS  Google Scholar 

  40. Rossi A, Polese G, Brandi G, Conti G (1995) Intrincis positive end-expiratory pressure (PEEPi). Intensive Care Med 21:522–536

    Article  PubMed  CAS  Google Scholar 

  41. Vieillard-Baron A, Jardin F (2003) The issue of dynamic hyperinflation in acute respiratory distress syndrome patients. Eur Respir J 22(Suppl 42):43S–47S

    Article  Google Scholar 

  42. De Durante G, del Turco M, Rustichina L et al (2002) ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distrss syndrome. Am J Respir Crit Care Med 165:1271–1274

    Article  Google Scholar 

  43. Mercat A, Diehl JL, Michard F et al (2001) Extending inspiratory time in acute respiratory distress syndrome. Crit Care Med 29:40–44

    Article  PubMed  CAS  Google Scholar 

  44. Tharratt RS, Allen RB, Albertson TF (1988) Pressure controlled inverse ratio ventilation in severe adult respiratory failure. Chest 94:755–762

    Article  PubMed  CAS  Google Scholar 

  45. Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP (2004) Permissive hypercapnia-role in protective lung ventilatory strategies. Intensive Care Med 30:347–356

    Article  PubMed  Google Scholar 

  46. Carvalho CRR, Barbas CSV, Medeiros DM et al (1997) Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP in ARDS. Am J Respir Crit Care Med 156:1458–1466

    PubMed  CAS  Google Scholar 

  47. Pfeiffer B, Hachenberg T, Wendt M, Marshall B (2002) Mechanical ventilation with permissive hypercapnia increases intrapulmonary shunt in septic and nonseptic patients with acute respiratory distress syndrome. Crit Care med30:285–289

    Article  PubMed  Google Scholar 

  48. Weber T, Tschernich H, Sitzwohl C et al (2000) Tromethamine puffer modifies the depressent effect of permissive hypercapnia on myocardial contractility in patients with acute rspiratory distress syndrome. Am J Respir Crit Care Med 162:1361–1365

    PubMed  CAS  Google Scholar 

  49. Böhm S, Lachmann B (1996) Pressure-control ventilation. Putting a mode into perspective. Int J Intensive Care 3:12–27

    Google Scholar 

  50. Rappaport SH, Shpiner R, Yoshihara G et al (1994) Randomized, prospective trial of pressure-limited vs volume-controlled ventilation in severe respiratory failure. Crit Care Med 22: 22–32

    PubMed  CAS  Google Scholar 

  51. Esteban A, Alia I, Gordo F et al (2000) Prospective randomized trial comparing pressure-controlled ventilation and volume-controlled vemtilation in ARDS. Chest 117:1690–1696

    Article  PubMed  CAS  Google Scholar 

  52. Bein T, Prasser C, Philipp A, Muller T, Weber F, Schlitt HJ, Schmid FX, Taeger K, Birnbaum D (2004) Pumpenfreie extrakorporale Lungenunterstützung mit arteriovenösem Shunt beim schweren akuten Lungenversagen des Erwachsenen. Anaesthesist 53:813–819

    PubMed  CAS  Google Scholar 

  53. Krishnan JA, Brower RG (2000) High-frequency ventilation for acute lung injury and ARDS. Chest 118: 795–807

    Article  PubMed  CAS  Google Scholar 

  54. Muders F, Pfeifer M, Müller T (2003) Methodik und Anwendung der Hochfrequenzoszillationsventilation (HFOV) bei akuter Lungenschädigung und ARDS. Intensivmed 40: 515–522

    Article  Google Scholar 

  55. Derdak S, Mehta S, Stewart TE et al (2002) High-frequency oscillatory Ventilation for acute respiratory distress syndrome in adults. A randomized, controlled trial. Am J Respir Crit Care Med 166:801–808

    Article  PubMed  Google Scholar 

  56. Pelosi P, Cadringher P, Bottino N et al (1999) Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med159:872–880

    PubMed  CAS  Google Scholar 

  57. Putensen C, Zech S, Wrigge H et al (2001) Long-term effect of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164:43–49

    PubMed  CAS  Google Scholar 

  58. Foti G, Cereda M, Sparacino ME et al (2000) Effects of periodic lung recruitment meneuvers on gas exchange and respiratory mechanics in mechanically ventilated acute respiratory distress syndrome (ARDS) patients. Intensive Care Med 26:501–507

    Article  PubMed  CAS  Google Scholar 

  59. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321

    Article  PubMed  CAS  Google Scholar 

  60. Knothe C, Huber T, Hiltl P et al (2000) Beatmung nach dem „openlung“-Konzept bei polytraumatisierten Patienten. Anästhesiol Intensivmed Notfallmed Schmerzther 35:306–315

    Article  PubMed  CAS  Google Scholar 

  61. Schreiter D, Reske A, Stichert B et al (2004) Alveolar recruitment in combination with sufficient positive end-expiratory pressure increases oxygenation and lung aeration in patients with severe chest trauma. Crit Care med 32:968–975

    Article  PubMed  Google Scholar 

  62. Engelmann L (2000) Das Open-lung-Konzept. Anaesthesist 49:1046–1053

    Article  Google Scholar 

  63. Wrigge H, Zinserling J, Stüber F et al (2000) Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesioly 93:1413–1417

    Article  CAS  Google Scholar 

  64. Pötz FB, Vreugdenhil HAE, Slutsky AS et al (2002) Mechanical ventilation alters the immune response in children without lung pathology. Intensive Care Med 28:486–492

    Article  Google Scholar 

  65. Tremblay L, Vaalenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    Article  PubMed  CAS  Google Scholar 

  66. Held HD, Boettcher S, Hamann L, Uhlig S (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-KB and is blocked by steroids. Am J Respir Crit Care Med 163:711–716

    PubMed  CAS  Google Scholar 

  67. Zapol WM, Snider MT, Hill JD et al (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomised prospective study. JAMA 242:2193–2196

    Article  PubMed  CAS  Google Scholar 

  68. Morris AH, Wallace CJ, Menlove RL et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory dirstress syndrome. Am J Respir Crit Care Med 149:295–305

    PubMed  CAS  Google Scholar 

  69. Lewandowski K (2000) Extracorporeal membrane oxygenation for severe acute respiratory failure. Crit Care 4:156–168

    Article  PubMed  CAS  Google Scholar 

  70. Anzueto A, Baughman RP, Guntupalli KK et al (1996) Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. N Engl J Med334:1417–1421

    Article  PubMed  CAS  Google Scholar 

  71. Gregory TJ, Steinberg KP, Spragg R et al (1997) Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 155:1309–1315

    PubMed  CAS  Google Scholar 

  72. Spragg RG (2004) Current status of surfactant treatment of ARDS/ALI. Appl Cardiopulm Pathophysiol 13:88

    Google Scholar 

  73. Walmrath D, Grimminger F, Pappert D et al (2002) Bronchoscopic administration of bovine natural surfactant in ARDS and septic shiock: impact on gas exchange and haemodynamics. Eur Respir J 19:805–810

    Article  PubMed  CAS  Google Scholar 

  74. Deres FL, Rommelheim K (1997) Surfactant und hochdosiertes Ambroxol nach Aspiration bei Sectioeinleitung. Anästhesiol Intensivmed 9:454–461

    Google Scholar 

  75. Hoheisel G, Moche M, Borte G et al (1997) Surfactantgabe und seitengetrennte Überdruckbeatmung bei akutem Lungenversagen und Atelektase nach septischem Abort. Pneumologie 51:270–273

    PubMed  CAS  Google Scholar 

  76. Abraham E, Park YC, Covington P et al (1996) Liposomal prostaglandin El in acute respiratory distress syndrome: a placebo-controlled, randomized, double-blind, multicenter clinical trail. Crit Care Med 24:10–15

    Article  PubMed  CAS  Google Scholar 

  77. Vincent JL, Bras R, Santman F et al (2001) A multi-centre, double-blind, placebo-controlled study of liposomal prostaglandin El (TLC C-53) in patients with acute respiratory distress syndrome. Intensive Care Med 27: 1578–1583

    Article  PubMed  CAS  Google Scholar 

  78. Walmrath D, Olschewski H, Grimminger F, Seeger W (1997) Vasodilatative Prostanoide von der Infusion zum Aerosol: neue Perspektiven für das ARDS und die primäre pulmonale Hypertonie. Intensivmed 34:370–380

    Article  Google Scholar 

  79. Lundin S, Mang H, Smithies M et al (1999) Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. Intensive Care Med 25:911–919

    Article  PubMed  CAS  Google Scholar 

  80. Taylor RW, Zimmerman JL, Dellinger RP et al (2004) Low-dose inhaled nitric oxide in patients with acute lung injury. JAMA 291:1603–1609

    Article  PubMed  CAS  Google Scholar 

  81. Germann P, Braschi A, D’Elia Rocca G et al (2005) Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive Care Med 31:1029–1041

    Article  PubMed  Google Scholar 

  82. Ely EW, Baker AM, Dunagan DP et al (1996) Effect on the duration of mechanical ventilation of indentifying patients capable of breathing spontaneously. N Engl J Med 335:1864–1869

    Article  PubMed  CAS  Google Scholar 

  83. Engelmann L, Petros S, Gundelach K, Wegscheider K (2006) Die Bedeutung des „second hit“ für den Sepsisverlauf. Intensivmed (im Druck)

    Google Scholar 

  84. Collective task force (2001) Evidence-based guidelines for weaning and discontinuing ventilatory support. Chest120:375S–395S

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Steinkopff Verlag

About this chapter

Cite this chapter

Engelmann, L. (2006). Septisches Lungenversagen. In: Engelmann, L., Schuster, HP. (eds) Diagnostik und Intensivtherapie bei Sepsis und Multiorganversagen. Steinkopff. https://doi.org/10.1007/978-3-7985-1729-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1729-5_9

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1728-8

  • Online ISBN: 978-3-7985-1729-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics