Skip to main content

Anti-endotoxin antibodies

A cross-reactive and cross-protective monoclonal antibody against a conserved epitope of Escherichia coli and Salmonella enterica

  • Chapter
Diagnostik und Intensivtherapie bei Sepsis und Multiorganversagen

Auszug

Lipopolysaccharid (LPS, Endotoxin) ist ein potenter Aktivator der angeborenen Immunantwort und löst die Freisetzung einer Vielzahl proinflammatorischer Mediatoren aus. Diese unkontrollierte Immunreaktion ist für den lebensbedrohlichen Zustand von Sepsis-Patienten verantwortlich. Eine erfolgreiche Strategie zur Behandlung der Gram-negativen Sepsis muss daher neben einer antiinfektiösen Therapie, d.h. der Eliminierung der Erreger durch konventionelle Antibiotika, eine antiendotoxische Therapie, d.h. Neutralisation der Wirkung von LPS, beinhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vaara M (1999) Lipopolysaccharide and the permeability of the bacterial outer membrane. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in Health and Disease. Marcel Dekker, Inc., New York, pp 31–38

    Google Scholar 

  2. Holst O (1999) Chemical structure of the core region of lipopolysaccharides. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in Health and Disease. Marcel Dekker, Inc., New York, pp 115–154

    Google Scholar 

  3. Zähringer U, Lindner B, Rietschel ETh (1999) Chemical structure of lipid A. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in Health and Disease. Marcel Dekker, Inc., New York, pp 93–114

    Google Scholar 

  4. Ziegler EJ, McCutchan JA, Fierer J, Glauser MP, Sadoff JC, Douglas H, Braude AI (1982) Treatment of gramnegative bacteremia and shock with human antiserum to a mutant Escherichia coli. N Engl J Med 307: 1225–1230

    Article  PubMed  CAS  Google Scholar 

  5. Galanos C, Lüderitz O, Rietschel ETh, Westphal O, Brade H, Brade L, Freudenberg M, Schade U, Imoto M, Yoshimura H, Kusumoto S, Shiba T (1985) Synthetic and natural Escherichia coli lipid. A express identical endotoxic activities. Eur J Biochem 148:1–5

    Article  PubMed  CAS  Google Scholar 

  6. Freudenberg MA, Keppler D, Galanos C (1986) Requirement for lipopolysaccharide-responsive macrophages in galactosamin-induced sensitization to endotoxin. Infect. Immun 51:891–895

    PubMed  CAS  Google Scholar 

  7. Vogel SNA (1990) The role of cytokines in endotoxin-mediated host response. In: Oppenheim JJ, Shevack EM (eds) Immunopharmacology — The Role of Cells and Cytokines in Immunity and Inflammation. Oxford University Press, New York, pp 238–258

    Google Scholar 

  8. Beutler B, Hoebe K, Du X, Ulevitch RJ (2003) How we detect microbes and respond to them: the Toll-like receptors and their transducers. J Leukocyte Biol 74:479–485

    Article  PubMed  CAS  Google Scholar 

  9. Tohme ZN, Amar S, Van Dyke TE (1999) Moesin functions as a lipopolysaccharide receptor on human monocytes. Infect Immun 67:3215–3220

    PubMed  CAS  Google Scholar 

  10. Amar S, Oyaisu K, Li L, Van Dyke T (2001) Moesin: a potential LPS receptor on human monocytes. J Endotoxin Res 7:281–286

    PubMed  CAS  Google Scholar 

  11. Iontcheva I, Amar S, Zawawi KH, Kantarci A, Van Dyke TE (2004) Role for moesin in lipopolysaccharide-stimulated signal transduction. Infect Immun 72:2312–2320

    Article  PubMed  CAS  Google Scholar 

  12. Seydel U, Scheel O, Müller M, Brandenburg K, Blunck R (2001) A K+ channel is involved in LPS signaling. J Endotoxin Res 7:243–247

    PubMed  CAS  Google Scholar 

  13. Müller M, Scheel O, Lindner B, Gutsmann T, Seydel U (2003) The role of membrane-bound LBP, endotoxin aggregates, and the MaxiK channel in LPS-induced cell activation. J Endotoxin Res 9:181–186

    PubMed  Google Scholar 

  14. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT (2003) LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 198: 1043–1055

    Article  PubMed  CAS  Google Scholar 

  15. Vinogradov EV, Van Der DK, Thomas-Oates JE, Meshkov S, Brade H, Holst O (1999) The structures of the carbohydrate backbones of the lipopolysaccharides from Escherichia coli rough mutants F470 (Rl core type) and F576 (R2 core type). Eur J Biochem 261: 629–639

    Article  PubMed  CAS  Google Scholar 

  16. Müller-Loennies S, Lindner B, Brade H (2002) Structural analysis of deacylated lipopolysaccharide of Escherichia coli strains 2513 (R4 core-type) and F653 (R3 core-type). Eur J Biochem 269:5982–5991

    Article  PubMed  CAS  Google Scholar 

  17. Müller-Loennies S, Lindner B, Brade H (2003) Structural analysis of oligosaccharides from LPS of E. coli K12 strain W3100 reveals a link between inner and outer core LPS biosynthesis. J Biol Chem 278:34090–34101

    Article  PubMed  CAS  Google Scholar 

  18. Galanos C, Lüderitz O, Rietschel ET, Westphal O (1977) Newer aspects of the chemistry and biology of bacterial lipopolysaccharideswith special reference to their lipid A component. In: Goodwin TW (ed) Biochemistry of Lipids II. University Park Press, Baltimore, pp 239–371

    Google Scholar 

  19. Khan SA, Everest P, Servos S, Foxwell N, Zähringer U, Brade H, Rietschel ET, Dougan G, Charles IG, Maskell DJ (1998) A lethal role for lipid A in Salmonella infections. Mol Microbiol 29:571–579

    Article  PubMed  CAS  Google Scholar 

  20. Rietschel ET, Brade H, Holst O, Brade L, Müller-Loennies S, Mamat U, Zähringer U, Beckmann F, Seydel U, Brandenburg K, Ulmer AJ, Mattern T, Heine H, Schletter J, Loppnow H, Schönbeck U, Flad HD, Hauschildt S, Schade UF, Di Padova F, Kusumoto S, Schumann RR (1996) Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr Top Microbiol Immunol 216:39–81

    PubMed  CAS  Google Scholar 

  21. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    PubMed  CAS  Google Scholar 

  22. Kramer RA, Brandenburg K, Vandeputte-Rutten L, Werkhoven M, Gros P, Dekker N, Egmond MR (2002) Lipopolysaccharide regions involved in the activation of Escherichia coli outer membrane protease OmpT. Eur J Biochem 269:1746–1752

    Article  PubMed  CAS  Google Scholar 

  23. De Cock H, Brandenburg K, Wiese A, Holst O, Seydel U (1999) Non-lamellar structure and negative charges of lipopolysaccharides required for efficient folding of outer membrane protein PhoE of Escherichia coli. J Biol Chem 274:5114–5119

    Article  PubMed  Google Scholar 

  24. Bulieris PV, Behrens S, Holst O, Kleinschmidt JH (2003) Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J Biol Chem 278:9092–9099

    Article  PubMed  CAS  Google Scholar 

  25. Olsthoorn MM, Petersen BO, Duus J, Haverkamp J, Thomas-Oates JE, Bock K, Holst O (2000) The structure of the linkage between the O-specific polysaccharide and the core region of the lipopolysaccharide from Salmonella enterica serovar Typhimurium revisited. Eur J Biochem 267:2014–2027

    Article  PubMed  CAS  Google Scholar 

  26. Olsthoorn MM, Petersen BO, Schlecht S, Haverkamp J, Bock K, Thomas-Oates JE, Holst O (1998) Identification of a novel core type in Salmonella lipopolysaccharide. Complete structural analysis of the core region of the lipopolysaccharide from Salmonella enterica sv. Arizonae 062. J Biol Chem 273:3817–3829

    Article  PubMed  CAS  Google Scholar 

  27. Knirel YA, Kochetkov NK (1994) The structure of lipopolysaccharides in Gram-negative bacteria. III. The structure of O-antigens. Biochem 59: 1325–1383

    Google Scholar 

  28. David SA (2001) Towards a rational development of ant-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit 14:370–387

    Article  PubMed  CAS  Google Scholar 

  29. Baumgartner J-D, Heumann D, Glauser M-P (1999) Therapeutic approaches targeting endotoxin-derived mediators. In: Brade H, Opal SM, Vogel SN, Morrison DC (eds) Endotoxin in Health and Disease. Marcel Dekker, Inc., New York Basel, pp 865–876.

    Google Scholar 

  30. Pollack M, Ohl CA (1999) Endotoxinbased molecular strategies for the prevention and treatment of gram-negative sepsis and septic shock. In: Rietschel ET, Wagner H (eds) Pathology of Sepsis and Septic Shock. Springer, Heidelberg, pp 275–297

    Google Scholar 

  31. Täte WJ, Douglas H, Braude AI, Wells WW (1966) Protection against lethality of E coli endotoxin with “O” antiserum. Ann NY Acad Sci 133:746–762

    Article  PubMed  Google Scholar 

  32. Davis CE, Brown KR, Douglas H, Täte WJ, Braude AI (1969) Prevention of death from endotoxin with antisera. I. The risk of fatal anaphylaxis to endotoxin. J Immunol 102:563–572

    PubMed  CAS  Google Scholar 

  33. Schiff DE, Wass CA, Cryz SJ Jr, Cross AS, Kim KS (1993) Estimation of protective levels of anti-O-specific lipopolysaccharide immunoglobulin G antibody against experimental Escherichia coli infection. Infect Immun 61:975–980

    PubMed  CAS  Google Scholar 

  34. Brade L, Engel R, Christ WJ, Rietschel ET (1997) A nonsubstituted primary hydroxyl group in position 6 of free lipid A is required for binding of lipid A monoclonal antibodies. Infect Immun 65:3961–3965

    PubMed  CAS  Google Scholar 

  35. Cross AS (1994) Antiendotoxin antibodies: a dead end? Ann Intern Med 121:58–60

    PubMed  CAS  Google Scholar 

  36. Massamiri T, Tobias PS, Curtiss LK (1997) Structural determinants for the interaction of lipopolysaccharide binding protein with purified high density lipoproteins: role of apolipoprotein A-I. J Lipid Res 38:516–525

    PubMed  CAS  Google Scholar 

  37. Di Padova FE, Brade H, Barclay GR, Poxton IR, Liehl E, Schuetze E, Kocher HP, Ramsay G, Schreier MH, McClelland DB, Rietschel ET (1993) A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect Immun 61:3863–3872

    PubMed  Google Scholar 

  38. Lehmann V, Freudenberg MA, Galanos C (1987) Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med 165: 657–663

    Article  PubMed  CAS  Google Scholar 

  39. Bailat S, Heumann D, Le Roy D, Baumgartner JD, Rietschel ET, Glauser MP, Di Padova F (1997) Similarities and disparities between core-specific and O-side-chainspecific antilipopolysaccharide monoclonal antibodies in models of endotoxemia and bacteremia in mice. Infect Immun 65:811–814

    PubMed  CAS  Google Scholar 

  40. Bahrami S, Yao YM, Leichtfried G, Redl H, Schlag G, Di Padova FE (1997) Monoclonal antibody to endotoxin attenuates hemorrhage-induced lung injury and mortality in rats. Crit Care Med 25:1030–1036

    Article  PubMed  CAS  Google Scholar 

  41. Müller-Loennies S, Holst O, Brade H (1994) Chemical structure of the core region of Escherichia coli J-5 lipopolysaccharide. Eur J Biochem 224:751–760.

    Article  PubMed  Google Scholar 

  42. Müller-Loennies S, Holst O, Lindner B, Brade H (1999) Isolation and structural analysis of phosphorylated oligosaccharides obtained from Escherichia coli J-5 lipopolysaccharide. Eur J Biochem 260:235–249

    Article  PubMed  Google Scholar 

  43. Müller-Loennies S, Brade L, MacKenzie CR, Di Padova F, Brade H (2003) Identification of a cross-reactive epitope widely present in lipopolysaccharide from Enterobacteria and recognized by the crossprotective monoclonal antibody WN1 222-5. J Biol Chem 278:25618–25627

    Article  PubMed  CAS  Google Scholar 

  44. Elbein AD, Heath EC (1965) The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. J Biol Chem 240:1919–1925

    PubMed  CAS  Google Scholar 

  45. Pollack M, Ohl CA, Golenbock DT, Di Padova F, Wahl LM, Koles NL, Guelde G, Monks BG (1997) Dual effects of LPS antibodies on cellular uptake of LPS and LPS-induced proinflammatory functions. J Immunol 159:3519–3530

    PubMed  CAS  Google Scholar 

  46. Van Amersfoort ES, Van Berkel TJC, Kuiper J (2003) Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16:379–414

    Article  PubMed  CAS  Google Scholar 

  47. Kirkland TN, Finley F, Leturcq D, Moriarty A, Lee JD, Ulevitch RJ, Tobias PS (1993) Analysis of lipopolysaccharide binding by CD 14. J Biol Chem 268:24818–24823

    PubMed  CAS  Google Scholar 

  48. Gazzano-Santoro H, Meszaros K, Birr C, Carroll SF, Theofan G, Horwitz AH, Lim E, Aberle S, Kasler H, Parent JB (1994) Competition between rBPI23, a recombinant fragment of bactericidal/permeability-increasing protein, and lipopolysaccharide (LPS)-binding protein for binding to LPS and gramnegative bacteria. Infect Immun 62:1185–1191

    PubMed  CAS  Google Scholar 

  49. Tobias PS, Soldau K, Ulevitch RJ (1989) Identification of a lipid A binding site in the acute phase reactant lipopolysaccharide binding protein. J Biol Chem 264:10867–10871

    PubMed  CAS  Google Scholar 

  50. Di Padova FE, Mikol V, Barclay GR, Poxton IR, Rietschel ET (1994) Antilipopolysaccharide core antibodies. Prog Clin Biol Res 388:85–94

    Google Scholar 

  51. Vinogradov E, Perry MB (2001) Structural analysis of the core region of the lipopolysaccharides from eight serotypes of Klebsiella pneumoniae. Carbohydr Res 335:291–296

    Article  PubMed  CAS  Google Scholar 

  52. Vinogradov E, Frirdich E, MacLean LL, Perry MB, Petersen BO, Duus JO, Whitfield C (2002) Structures of lipopolysaccharides from Klebsiella pneumoniae. Elucidation of the structure of the linkage region between core and polysaccharide O chain and identification of the residues at the non-reducing termini of the O chains. J Biol Chem 277:25070–25081

    Article  PubMed  CAS  Google Scholar 

  53. Heckmann F, Moll H, Jäger KE, Zähringer U (1995) 7-O-Carbamoyl-Lglycero-D-manno-heptose: a new core constituent in the lipopolysaccharide of Pseudomonas aeruginosa. Carbohydr Res 267:C–3–C–7

    Google Scholar 

  54. Reiter A, Brade L, Sanchez Carballo PM, Brade H, Kosma P (2001) Synthesis and immunochemical characterization of neoglycoproteins conntaining epitopes of the inner core region of Pseudomonas aeruginosa RNA group I lipopolysaccharide. J Endotoxin Res 7:125–131

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Steinkopff Verlag

About this chapter

Cite this chapter

Sven, ML., Di Franco, P., Lore, B., Helmut, B., Ernst, R.T. (2006). Anti-endotoxin antibodies. In: Engelmann, L., Schuster, HP. (eds) Diagnostik und Intensivtherapie bei Sepsis und Multiorganversagen. Steinkopff. https://doi.org/10.1007/978-3-7985-1729-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1729-5_17

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1728-8

  • Online ISBN: 978-3-7985-1729-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics