Coronary surgery: devices for distal anastomoses


In this chapter we review anastomosis devices that allow the construction of end-to-side coronary anastomosis. Several distal devices using different technologies have been developed and are currently under clinical investigation to assess their potential benefits in terms of enabling limited access coronary surgery like totally endoscopic coronary surgery, reducing the technical demand for the anastomosis construction and standardizing anastomosis quality. Some of these devices can be also used with arterial graft, the majority are compatible with beating heart surgery and almost all show good results in terms of early graft patency. All patients receiving distal connectors are under thrombocyte aggregation inhibition with aspirin and/or clopidogrel for at least 1 month after the operation.


Vein Graft Patency Rate Distal Anastomosis Coronary Surgery Coronary Artery Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schaff HV, Zehr KJ, Bonilla LF et al. (2002) An experimental model of saphenous vein to coronary artery anastomosis with the St. Jude Medical Stainless Steel connector. Ann Thorac Surg 73:830–836PubMedCrossRefGoogle Scholar
  2. 2.
    Eckstein FS, Bonilla LF, Meyer BJ et al. (2001) Sutureless mechanical anastomosis of a saphenous vein graft to a coronary artery with a new connector device. Lancet 357:931–932PubMedCrossRefGoogle Scholar
  3. 3.
    Eckstein FS, Meyer BJ, Bonilla L et al. (2002) First clinical results with a new mechanical connector for coronary artery anastomoses in CABG. Circulation 106(Suppl I):I1–4PubMedGoogle Scholar
  4. 4.
    Eckstein FS, Bonilla LF, Schaff HV et al. (2002) Two generations of the St. Jude Medical ATG coronary connector systems for coronary artery anastomoses in coronary artery bypass grafting. Ann Thorac Surg 74:S1363–1367PubMedCrossRefGoogle Scholar
  5. 5.
    Zehr KJ, Hamner CE, Bonilla L, Berg T, Cornelius R, Hindrichs P, Scha HV (2003) Evaluation of a novel 2 mm internal diameter stainless steel saphenous vein to coronary artery connector: laboratory studies of on-pump and off-pump revascularization Eur J Cardio Thorac Surg 23:925–934CrossRefGoogle Scholar
  6. 6.
    Carrel T, Englberger L, Keller D, Windecker S, Meier B, Eckstein F (2004) Clinical and angiographic results after mechanical connection for distal anastomosis in coronary surgery. Thorac Cardiovasc Surg 127(6):1632–1640CrossRefGoogle Scholar
  7. 7.
    Wiklund L, Bonilla LF, Berglin E (2005) A new mechanical connector for distal coronary anastomoses in coronary artery bypass grafting: a randomized, controlled study. J Thor Cardiovasc Surg 129:146–150CrossRefGoogle Scholar
  8. 8.
    Solem JO, Boumzebra D, Al-Buraiki J, Nakeeb S, Rafeh W, Al-Halees Z (2000) Evaluation of a new device for quike sutureless coronary artery anastomosis in surviving sheep. Euro J Cardio Thorac Surg 17:312–318CrossRefGoogle Scholar
  9. 9.
    Tozzi P, Solem JO, Boumzebra D, Mucciolo A, Genton CY, Chaubert P, von Segesser LK (2001) Is the GraftConnector a valid alternative to running suture in end-to-side coronary arteries anastomoses? Ann Thorac Surg 72(3):S999–1003PubMedCrossRefGoogle Scholar
  10. 10.
    Bar FW, van der Veen FH, Benzina A, Habets J, Koole LH (2000) New biocompatible polymer surface coating for stents results in a low neointimal response. J Biomed Mater Res 52(1):193–198PubMedCrossRefGoogle Scholar
  11. 11.
    Garasic JM, Edelman ER, Squire JC et al. (2000) Stent and artery geometry determine intimal thickening independent of arterial injury. Circulation 101(7):812–818PubMedGoogle Scholar
  12. 12.
    Marty B, Dirsch O, von Segesser LK, Schneider J, Turina M (1997) Reaction of the blood vessel wall to microporous endovascular prostheses. Vasa 26(1):33–38PubMedGoogle Scholar
  13. 13.
    Galgut P, Pitrola R, Waite I, Doyle C, Smith R (1991) Histological evaluation of biodegradable and non degradable membranes placed transcutaneously in rats. J Clin Periodontol 18(8):581–586PubMedCrossRefGoogle Scholar
  14. 14.
    Loop FD (2000) Anastomotic techniques. In: Cox JL (ed) Operative techniques in thoracic and cardiovascular surgery: a comparative atlas. WB Saunders, Philadelphia, PA, pp 222–230Google Scholar
  15. 15.
    Filsoufi F, Farivar RS, Aklog L, Anderson CA, Chen RH, Lichtenstein S, Zhang J, Adams DH (2004) Automated distal coronary bypass with a novel magnetic coupler (MVP system). Thorac Cardiovasc Surg 127(1):185–192CrossRefGoogle Scholar
  16. 16.
    Klima U, Falk V, Moritz A, Mohr FW, Haverich A, Wimmer-Greinecker G (2003) Magnetic vascular coupling in coronary artery bypass grafting: a multicenter trial. J Thorac Cardiovasc Surg 126(5):1568–1574PubMedCrossRefGoogle Scholar
  17. 17.
    Klima U, Mac Vaugh H, Bagaev E, Maringka M, Kirschner S, Beilner J, Haveric A (2004) Magnetic vascular port in minimally invasive direct coronary artery bypass grafting. Circulation 110(11 Suppl 1):II55–60PubMedGoogle Scholar
  18. 18.
    Falk V, Walther T, Jacobs S, Wolf, Mohr FW (2005) Facilitated MIDCAB using a magnetic coupling device. Ann Thorac Surg 79(2):691–693PubMedCrossRefGoogle Scholar
  19. 19.
    Casselman FP, Meco M, Dom H, Foubert L, Van Praet F, Vanermen H (2004) Multivessel distal sutureless off-pump coronary artery bypass grafting procedure using magnetic connectors. Ann Thorac Surg 78(2)38–40CrossRefGoogle Scholar
  20. 20.
    Shennib H, Korkola SJ, Bousette N, Giaid A (2000) An automated interrupted suturing device for coronary artery bypass grafting: automated coronary anastomosis. Ann Thor Surg 70:1046–1048CrossRefGoogle Scholar
  21. 21.
    Silber S (2000) Ten years of arterial closure devices: a critical analysis of their use after PTCA. Z Kardiol 89(5):383–389PubMedCrossRefGoogle Scholar
  22. 22.
    Tozzi P, Stumpe F, Ruchat P, Marty B, Corno AF, von Segesser LK (2001) Preliminary clinical experience with the Hartflo anastomosis device. Thorac Cardiovasc Surg 49(5):279–282PubMedCrossRefGoogle Scholar
  23. 23.
    Scheltes JS, Heikens M, Pistecky PV, van Andel C, Borst C (2000) Assesment of patented coronary end-to-side anastomotic devices using micromechanical bonding. Ann Thorac Surg 70(1):218–221PubMedCrossRefGoogle Scholar
  24. 24.
    Magovern JA, Solien EE, Groth DM, Whayne JG, Fleischman SD (2003) A facilitated sutureless coronary anastomosis that is rapid, reproducible and geometrically optimized. Heart Surg Forum 6(Suppl 1):S34Google Scholar
  25. 25.
    Schoeneich F, Boening A, Brandt M, Lotti R, Cremer J (2003) First clinical experience with a 30 degree end-to-side coronary anastomosis coupler. Heart Surg Forum (Suppl 1):S19Google Scholar
  26. 26.
    Boening A, Schoeneich F, Lichtenberg A, Bagaev E, Klima U, Cremer J (2005) First clinical results with a 30° end-to-side coronary anastomosis coupler. Eur J Cardiothorac Surg 27:876–881PubMedCrossRefGoogle Scholar
  27. 27.
    Suyker W, Buijsrogge MP PhD B, Suyker PTW, Verlaan C, Borst C, Gründeman PF (2004) Stapled coronary anastomosis with minimal intraluminal artifact: the S2 Anastomotic System in the off-pump porcine model. J Thorac Cardiovasc Surg 127(2):498–503PubMedCrossRefGoogle Scholar
  28. 28.
    Bar-El Y, Tio FO, Shofti R (2003) An automatic sutureless coronary anastomotic device: initial results of an animal study. Heart Surg Forum 6(5):369–374PubMedGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2007

Personalised recommendations