Advertisement

Mathematic modelling of vascular anastomoses

Abstract

The majority of mathematical models of vascular anastomoses assume that blood flow is laminar, the blood is an incompressible non-Newtonian fluid and conduits, arteries and graft as well, have rigid walls that don’t react to blood pressure.

Keywords

Wall Shear Stress Intimal Hyperplasia Vascular Anastomosis Compliance Mismatch Myointimal Hyperplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15:708–717PubMedCrossRefGoogle Scholar
  2. 2.
    Perktold K, Tatzl H, Rappitsch G (1994) Flow dynamic effect of the anastomotic angle: a numerical study of pulsatile flow in vascular graft anastomoses models. Tech Health Care 1:197–207Google Scholar
  3. 3.
    Trubel W, Schima H, Moritz A, Raderer F, Windisch A, Ullrich R, Windberger U, Losert U, Polterauer P (1995) Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumen-adapted venous grafts. Euro J Vasc Endovasc Surg 10:1–9CrossRefGoogle Scholar
  4. 4.
    Lemson MS, Tordoir JHM, Daemen MJAP, Kitslaar PJEHM (2000) Intimal hyperplasia in vascular grafts. Europ J Vasc Endovasc Surg 19:336–350CrossRefGoogle Scholar
  5. 5.
    Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H (1996) Numerical study of wall mechanics and fluid dynamics in end-to-side anastomosis and correlation to intimal hyperplasia. J Biomech 29:1297–1308PubMedCrossRefGoogle Scholar
  6. 6.
    Giddens EM, Giddens DP, White S, Zarins CK, Bassiouny H, Glagov S (1990) Exercise flow conditions eliminate stasis at vascular graft anastomoses. In: Schneck DJ, Lucas CL (eds) Biofluid Mechanics: Proceedings of the Third Mid-Atlantic Conference on Biofluid Mechanics. University Press, New York, pp 255–267Google Scholar
  7. 7.
    Keynton RS, Rittgers SE, Shu MCS (1990) Hemodynamic effects of angle and flow rate within distal vascular graft anastomoses. In: Schneck DJ, Lucas CL (eds) Biofluid Mechanics: Proceedings of the Third Mid-Antlantic Conference on Biofluid Mechanics. University Press, New York, pp 227–236Google Scholar
  8. 8.
    Schima H, Trubel W, Raderer F, Scherer R, Einav S, Perktold K, Moritz A (1994) Investigation of the flow velocity pattern in distal end-to-side anastomoses and the correlation to intimal hyperplasia. In: Liepsch D (ed) Biofluid Mechanics, Fortschrittberichte, Biotechnik, Reihe 17. VDI, Düsseldorf, 107(Suppl):21–26Google Scholar
  9. 9.
    White S, Zarins CK, Giddens DP, Bassiouny H, Loth F, Jones SA, Glagov S (1993) Hemodynamic patterns in two models of end-to-side vascular bypass anastomoses: effects of pulsatility, flow division, Reynolds number and hood length. J Biomech Eng 115:104–111PubMedGoogle Scholar
  10. 10.
    Ethier CR, Zhang X, Karpik SR, Ojha M (1993) Numerical simulation of flow in a model 3-D end-to-side anastomoses. In: Tarbell JM (ed) Advances in Bioengineering, BED-Vol. 26, ASME, New York, pp 83–86Google Scholar
  11. 11.
    Steinman DA, Vinh B, Ethier RC, Ojha M, Cobbold RSC, Johnston KW (1993) A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. J Biomech Eng 115:112–118PubMedGoogle Scholar
  12. 12.
    Inzoli F, Migliavacca F, Mantero S (1994) Pulsatile flow in an aorto-coronary bypass 3-D model. In: Liepsch D (ed) Biofluid Mechanics. Fortschrittberichte, Reihe 17, Biotechnik. VDI, Düsseldorf, 107:455–463Google Scholar
  13. 13.
    Perktold K, Rappitsch G, Gruber G, Trubel W, Schima H (1996) The interaction of geometry and local flow phenomena in compliant end-to-side anastomoses models. In: Rastegar S (ed) Advances in Bioengineering. ASME, New York, 33:77–78Google Scholar
  14. 14.
    Perktold K, Hofer M, Karner G, Trubel W, Schima H (1998) Computer simulation of vascular fluid dynamics and mass transport: optimum design of arterial bypass anastomoses. In: Papailiou KD, Tsahalis D, Périaux J, Knoerzer D (eds) Computational Fluid Dynamics’ 98. Wiley, New York, 2:484–489Google Scholar
  15. 15.
    Perktold K, Hofer M, Rappitsch G, Löw M, Kuban BD, Friedman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228PubMedCrossRefGoogle Scholar
  16. 16.
    Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL (1996) Non-planar geometry and non-planar type flow at sites of arterial curvature and branching implications for arterial biology and disease. In: Jaffrin MY, Caro CG (eds) Biological Flows. Plenum Press, London New York, pp 69–81Google Scholar
  17. 17.
    LoGerfo FW, Quist WC, Nowak MD, Crawshaw HM, Haudenschild CC (1983) Downstream anastomotic hyperplasia: a mechanism for failure in Dacron arterial grafts. Ann Surg 197:479–483PubMedCrossRefGoogle Scholar
  18. 18.
    Trubel W, Moritz A, Schima H, Raderer F, Scherer R, Ullrich R, Losert U, Polterauer P (1994) Compliance and formation of distal anastomotic intimal hyperplasia in dacron mesh tube constricted veins used as arterial bypass grafts. ASAIO J 40:M273–278PubMedGoogle Scholar
  19. 19.
    Ballyk PD, Walsh C, Butany J, Ojha M (1998) Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 31:229–237PubMedCrossRefGoogle Scholar
  20. 20.
    Leuprecht A, Perktold K, Prosi M, Berk Th, Wolfgang T, Schima H (2002) Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J Biomech 35:225–236PubMedCrossRefGoogle Scholar
  21. 21.
    Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation in incompressible viscous flows. Comp Meth Appl Mech Eng 29:329–349CrossRefGoogle Scholar
  22. 22.
    Koiter WT, Simmonds JC (1973) Foundations of shell theory. Proceedings of the 13th International Congress Theory on Applied Mechanics. Springer, Berlin, pp 150–176Google Scholar
  23. 23.
    Hofer M, Perktold K (1995) Vorkonditionierter konjugierter Gradienten Algorithmus für große schlecht konditionierte unsymmetrische Gleichungssysteme, Suppl Vol ZAMM. Z Angew Math Mech 75(SII):S641–642Google Scholar
  24. 24.
    Morinaga K, Okadome K, Kuroki M, Miyazaki T, Muto Y, Inokuchi K (1985) Effect of wall stress on intimal thickening of arterially transplanted veins in dogs. J Vasc Surg 2:430–433PubMedCrossRefGoogle Scholar
  25. 25.
    Noori N, Scherer R, Perktold K, Czerny M, Karner G, Trubel W, Polterauer P, Schima H (1999) Blood flow in distal end-to-side anastomoses with PTFE and a venous patch: results of an in-vitro flow visualization study. Europ J Endovasc Surg 18:191–200CrossRefGoogle Scholar
  26. 26.
    Sottiurai VS, Yao JST, Baston RC, Sue SL, Jones R, Nakamura YA (1989) Distal anastomotic intimal hyperplasia: histological character and bigenesis. Ann Vasc Surg 3:26–33PubMedCrossRefGoogle Scholar
  27. 27.
    Kissin M, Kansal N, Pappas PJ, DeFouw DO, Durán WN, Hobsen RW (2000) Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluorethylene bypass grafts. J Vasc Surg 31:69–83PubMedCrossRefGoogle Scholar
  28. 28.
    Miller JH, Foreman RK, Ferguson L, Faris I (1984) Interposition vein cuff for anastomosis of prosthesis to small artery. Australian and New Zealand J Surg 54:283–285Google Scholar
  29. 29.
    Taylor RS, Loh A, McFarland RJ, Cox M, Chester JF (1992) Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br J Surg 79:348–354PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2007

Personalised recommendations