Skip to main content

Mathematic modelling of vascular anastomoses

  • Chapter
  • 720 Accesses

Abstract

The majority of mathematical models of vascular anastomoses assume that blood flow is laminar, the blood is an incompressible non-Newtonian fluid and conduits, arteries and graft as well, have rigid walls that don’t react to blood pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK (1992) Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg 15:708–717

    Article  PubMed  CAS  Google Scholar 

  2. Perktold K, Tatzl H, Rappitsch G (1994) Flow dynamic effect of the anastomotic angle: a numerical study of pulsatile flow in vascular graft anastomoses models. Tech Health Care 1:197–207

    Google Scholar 

  3. Trubel W, Schima H, Moritz A, Raderer F, Windisch A, Ullrich R, Windberger U, Losert U, Polterauer P (1995) Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumen-adapted venous grafts. Euro J Vasc Endovasc Surg 10:1–9

    Article  Google Scholar 

  4. Lemson MS, Tordoir JHM, Daemen MJAP, Kitslaar PJEHM (2000) Intimal hyperplasia in vascular grafts. Europ J Vasc Endovasc Surg 19:336–350

    Article  CAS  Google Scholar 

  5. Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H (1996) Numerical study of wall mechanics and fluid dynamics in end-to-side anastomosis and correlation to intimal hyperplasia. J Biomech 29:1297–1308

    Article  PubMed  CAS  Google Scholar 

  6. Giddens EM, Giddens DP, White S, Zarins CK, Bassiouny H, Glagov S (1990) Exercise flow conditions eliminate stasis at vascular graft anastomoses. In: Schneck DJ, Lucas CL (eds) Biofluid Mechanics: Proceedings of the Third Mid-Atlantic Conference on Biofluid Mechanics. University Press, New York, pp 255–267

    Google Scholar 

  7. Keynton RS, Rittgers SE, Shu MCS (1990) Hemodynamic effects of angle and flow rate within distal vascular graft anastomoses. In: Schneck DJ, Lucas CL (eds) Biofluid Mechanics: Proceedings of the Third Mid-Antlantic Conference on Biofluid Mechanics. University Press, New York, pp 227–236

    Google Scholar 

  8. Schima H, Trubel W, Raderer F, Scherer R, Einav S, Perktold K, Moritz A (1994) Investigation of the flow velocity pattern in distal end-to-side anastomoses and the correlation to intimal hyperplasia. In: Liepsch D (ed) Biofluid Mechanics, Fortschrittberichte, Biotechnik, Reihe 17. VDI, Düsseldorf, 107(Suppl):21–26

    Google Scholar 

  9. White S, Zarins CK, Giddens DP, Bassiouny H, Loth F, Jones SA, Glagov S (1993) Hemodynamic patterns in two models of end-to-side vascular bypass anastomoses: effects of pulsatility, flow division, Reynolds number and hood length. J Biomech Eng 115:104–111

    PubMed  CAS  Google Scholar 

  10. Ethier CR, Zhang X, Karpik SR, Ojha M (1993) Numerical simulation of flow in a model 3-D end-to-side anastomoses. In: Tarbell JM (ed) Advances in Bioengineering, BED-Vol. 26, ASME, New York, pp 83–86

    Google Scholar 

  11. Steinman DA, Vinh B, Ethier RC, Ojha M, Cobbold RSC, Johnston KW (1993) A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. J Biomech Eng 115:112–118

    PubMed  CAS  Google Scholar 

  12. Inzoli F, Migliavacca F, Mantero S (1994) Pulsatile flow in an aorto-coronary bypass 3-D model. In: Liepsch D (ed) Biofluid Mechanics. Fortschrittberichte, Reihe 17, Biotechnik. VDI, Düsseldorf, 107:455–463

    Google Scholar 

  13. Perktold K, Rappitsch G, Gruber G, Trubel W, Schima H (1996) The interaction of geometry and local flow phenomena in compliant end-to-side anastomoses models. In: Rastegar S (ed) Advances in Bioengineering. ASME, New York, 33:77–78

    Google Scholar 

  14. Perktold K, Hofer M, Karner G, Trubel W, Schima H (1998) Computer simulation of vascular fluid dynamics and mass transport: optimum design of arterial bypass anastomoses. In: Papailiou KD, Tsahalis D, Périaux J, Knoerzer D (eds) Computational Fluid Dynamics’ 98. Wiley, New York, 2:484–489

    Google Scholar 

  15. Perktold K, Hofer M, Rappitsch G, Löw M, Kuban BD, Friedman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228

    Article  PubMed  CAS  Google Scholar 

  16. Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL (1996) Non-planar geometry and non-planar type flow at sites of arterial curvature and branching implications for arterial biology and disease. In: Jaffrin MY, Caro CG (eds) Biological Flows. Plenum Press, London New York, pp 69–81

    Google Scholar 

  17. LoGerfo FW, Quist WC, Nowak MD, Crawshaw HM, Haudenschild CC (1983) Downstream anastomotic hyperplasia: a mechanism for failure in Dacron arterial grafts. Ann Surg 197:479–483

    Article  PubMed  CAS  Google Scholar 

  18. Trubel W, Moritz A, Schima H, Raderer F, Scherer R, Ullrich R, Losert U, Polterauer P (1994) Compliance and formation of distal anastomotic intimal hyperplasia in dacron mesh tube constricted veins used as arterial bypass grafts. ASAIO J 40:M273–278

    PubMed  CAS  Google Scholar 

  19. Ballyk PD, Walsh C, Butany J, Ojha M (1998) Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J Biomech 31:229–237

    Article  PubMed  CAS  Google Scholar 

  20. Leuprecht A, Perktold K, Prosi M, Berk Th, Wolfgang T, Schima H (2002) Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J Biomech 35:225–236

    Article  PubMed  Google Scholar 

  21. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation in incompressible viscous flows. Comp Meth Appl Mech Eng 29:329–349

    Article  Google Scholar 

  22. Koiter WT, Simmonds JC (1973) Foundations of shell theory. Proceedings of the 13th International Congress Theory on Applied Mechanics. Springer, Berlin, pp 150–176

    Google Scholar 

  23. Hofer M, Perktold K (1995) Vorkonditionierter konjugierter Gradienten Algorithmus für große schlecht konditionierte unsymmetrische Gleichungssysteme, Suppl Vol ZAMM. Z Angew Math Mech 75(SII):S641–642

    Google Scholar 

  24. Morinaga K, Okadome K, Kuroki M, Miyazaki T, Muto Y, Inokuchi K (1985) Effect of wall stress on intimal thickening of arterially transplanted veins in dogs. J Vasc Surg 2:430–433

    Article  PubMed  CAS  Google Scholar 

  25. Noori N, Scherer R, Perktold K, Czerny M, Karner G, Trubel W, Polterauer P, Schima H (1999) Blood flow in distal end-to-side anastomoses with PTFE and a venous patch: results of an in-vitro flow visualization study. Europ J Endovasc Surg 18:191–200

    Article  CAS  Google Scholar 

  26. Sottiurai VS, Yao JST, Baston RC, Sue SL, Jones R, Nakamura YA (1989) Distal anastomotic intimal hyperplasia: histological character and bigenesis. Ann Vasc Surg 3:26–33

    Article  PubMed  CAS  Google Scholar 

  27. Kissin M, Kansal N, Pappas PJ, DeFouw DO, Durán WN, Hobsen RW (2000) Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluorethylene bypass grafts. J Vasc Surg 31:69–83

    Article  PubMed  CAS  Google Scholar 

  28. Miller JH, Foreman RK, Ferguson L, Faris I (1984) Interposition vein cuff for anastomosis of prosthesis to small artery. Australian and New Zealand J Surg 54:283–285

    CAS  Google Scholar 

  29. Taylor RS, Loh A, McFarland RJ, Cox M, Chester JF (1992) Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br J Surg 79:348–354

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Steinkopff Verlag Darmstadt

About this chapter

Cite this chapter

(2007). Mathematic modelling of vascular anastomoses. In: Sutureless Anastomoses. Steinkopff. https://doi.org/10.1007/978-3-7985-1715-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1715-8_3

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1714-1

  • Online ISBN: 978-3-7985-1715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics