Skip to main content

The physiology of blood flow and artery wall

  • Chapter
  • 726 Accesses

Abstract

Arterial hemodynamics play an important role in the genesis and progression of vascular diseases and anastomoses outcome [1]. Flow dynamics on the vessel bifurcation and on the vascular anastomosis and the mechanical properties of artery wall seem to play an important role in the development of myointimal hyperplasia. Non-physiological or turbulent flow fields like flow stagnation, flow separation, recirculation, as well as intramural stress distributions promote atherosclerotic disease and myointimal proliferation (Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066

    PubMed  CAS  Google Scholar 

  2. Hopkins RW (1991) Presidential address. In: Bernoulli D, Young T, Poiseuille JLM, Simone FA (eds) Energy, Poise, and Resilience. J Vasc Surg 13:777–784

    Google Scholar 

  3. Wolf S, Werthenssen N (1979) Dynamics of arterial flow. Plenum Press, New York

    Google Scholar 

  4. Nichols WW, O’Rourke MF (1990) McDonald’s blood flow in arteries, theoretic, experimental and clinical principles, 3rd ed. Lea & Febiger, Philadelphia London, pp 38–56

    Google Scholar 

  5. Zarins CK, Zatina MA, Giddens DP, Ku DN, Glagov S (1987) Shear stress regulation of artery lumen diameter in experimental atherogenesis. J Vasc Surg 5:413–420

    Article  PubMed  CAS  Google Scholar 

  6. Zhuang YJ, Singh TM, Zarins CK, Masuda H (1998) Sequential increases and decreases in blood flow stimulates progressive intimal thickening. Eur J Vasc Endovasc Surg 16:301–310

    Article  PubMed  CAS  Google Scholar 

  7. Gnasso A, Carallo C, Irace C, Spagnuolo V, de Novara G, Mattioli PL (1996) Association between intima-media thickness and wall shear stress in common carotid arteries in heatthy male subjects. Circulation 94:3257–3262

    PubMed  CAS  Google Scholar 

  8. Davies PF, Tripathi SC (1993) Mechanical stress mechanisms and the cell: an endothelial paradigm. Circ Res 72:239–245

    PubMed  CAS  Google Scholar 

  9. Malek AM, Izumo S (1994) Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens 12:989–999

    Article  PubMed  CAS  Google Scholar 

  10. Mohan S, Mohan N, Valente AJ, Sprague EA (1999) Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am J Physiol 276:C1100–1107

    PubMed  CAS  Google Scholar 

  11. Hehrlein C, Chuang CH, Tuntelder JR, Tatsis GP, Littmann L, Svenson RH (1991) Effects of vascular runoff on myointimal hyperplasia after mechanical balloon or thermal laser arterial injury in dogs. Circulation 84:884–890

    PubMed  CAS  Google Scholar 

  12. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53:502–514

    PubMed  CAS  Google Scholar 

  13. Pedersen EM, Oyre S, Agerbaek M, Kristensen IB, Ringgaard S, Boesiger P et al. (1999) Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur J Vasc Endovasc Surg 18:328–333

    Article  PubMed  CAS  Google Scholar 

  14. Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its rote in atherosclerosis. JAMA 282:2035–2042

    Article  PubMed  CAS  Google Scholar 

  15. Berguer R, Higgins RF, Reddy DJ (1980) Intimal hyperplasia. An experimental study. Arch Surg 115(3):332–335

    PubMed  CAS  Google Scholar 

  16. Dobrin PB, Littooy FN, Endean ED (1989) Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105(3):393–400

    PubMed  CAS  Google Scholar 

  17. Dobrin PB (1995) Mechanical factors associated with the development of intima and medial thickening in vein grafts subjected to arterial pressure. Hypertension 26:38–43

    PubMed  CAS  Google Scholar 

  18. Meyerson SL, Skelly CL, Curi MA et al. (2001) The effects of extremely low shear stress on cellular proliferation and neointimal thickening in the failing bypass graft. J Vasc Surg 34:90–97

    Article  PubMed  CAS  Google Scholar 

  19. Dobrin PB (1978) Mechanical properties of arteries. Physiol Rev 58:397–460

    PubMed  CAS  Google Scholar 

  20. Cox RH (1978) Passive mechanics and connective tissue composition of canine arteries. Am J Physiol 234:H533–H541

    PubMed  CAS  Google Scholar 

  21. Schonfeld D, Atabek HB, Patel DJ (1979) Geometry and elastic response of the aorto iliac juntion. J Biomech 12:483–489

    Article  PubMed  CAS  Google Scholar 

  22. Doyle JM, Dobrin PB (1973) Stress gradients in the walls of large arteries. J Biomech 6:631–639

    Article  PubMed  CAS  Google Scholar 

  23. Lawton RW (1957) Some aspects of research in biological elasticity. Introductory remarks. In: Remington JW (ed) Tissue elasticity. Am Physiol Soc, Washington, DC, pp 1–11

    Google Scholar 

  24. Patel DJ, Fry DL (1964) In situ pressure-radius-length measurements in ascending aorta of anesthetized dogs. J Appl Physiol 19:413–416

    PubMed  CAS  Google Scholar 

  25. Patel DJ, Fry DL (1966) Longitudinal tethering of arteries in dogs. Circ Res 19:1011–1021

    PubMed  CAS  Google Scholar 

  26. Tozzi P, Hayoz D, Oedman C, Mallabiabarrena I, von Segesser LK (2001) Systolic axial artery length reduction: an overlooked phenomenon in vivo. Am J Physiol Heart Circ Physiol 280(5):H2300–H2305

    PubMed  CAS  Google Scholar 

  27. Arndt JO, Kober G (1970) Pressure diameter relationship of the intact femoral artery in conscious man. Pflugers Arch 318:130–146

    Article  PubMed  CAS  Google Scholar 

  28. Weizsacker HW, Pinto JG (1988) Isotropy and anisotropy of the arterial wall. J Biomech 21(6):477–487

    Article  PubMed  CAS  Google Scholar 

  29. Lichtenstein O, Safar ME, Poitevin P, Levy BI (1995) Biaxial mechanical properties of carotid arteries from normotensive and hypertensive rats. Hypertension 26(1):15–19

    PubMed  CAS  Google Scholar 

  30. Tozzi P, Hayoz D, Corno AF, Mallabiabarrena I, von Segesser LK (2003) Cross-sectional compliance overestimates arterial compliance because it neglects the axial strain. Swiss Med Wkly 133:461–464

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Steinkopff Verlag Darmstadt

About this chapter

Cite this chapter

(2007). The physiology of blood flow and artery wall. In: Sutureless Anastomoses. Steinkopff. https://doi.org/10.1007/978-3-7985-1715-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7985-1715-8_2

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1714-1

  • Online ISBN: 978-3-7985-1715-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics