Advertisement

Belastungsuntersuchungen: Praktische Durchführung und Interpretation

Chapter
  • 2.1k Downloads

Auszug

Jede Bewertung der Leistungsfähigkeit und Belastbarkeit setzt neben der Kenntnis unterschiedlicher klinischer Befunde und Messwerte eine Belastungsuntersuchung voraus. Diese erfolgt in der Regel mit simultaner EKGRegistrierung (sog. Belastungs-EKG) und Blutdruckmessung als laborgestützte Fahrrad- oder Laufbandergometrie. Auf der Basis von Belastungsuntersuchungen kann eine Einschätzung der körperlichen Leistungsfähigkeit vorgenommen werden, die sich aus der Analyse der ergometrischen Messdaten ergibt. Die Leistungsfähigkeit kann durchaus abweichen von der Belastbarkeit, definiert als (sichere) Belastungsintensität, die frei von Symptomen oder anderen verdächtigen klinischen Zeichen bleibt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ahmaidi S, Hardy JM, Varray A, Collomp K, Mercier J, Préfaut C (1993) Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes. Eur J Appl Physiol 66:31–36CrossRefGoogle Scholar
  2. 2.
    Anderson G, Rhodes EC (1991) The relationship between blood lactate and excess CO2 in elite cyclists. J Sports Sci 9:173–181PubMedGoogle Scholar
  3. 3.
    Aunola S, Rusko H (1984) Reproducibility of aerobic and anaerobic thresholds in 20–50 year old men. Eur J Appl Physiol 53:260–266CrossRefGoogle Scholar
  4. 4.
    Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027PubMedGoogle Scholar
  5. 5.
    Belardinelli R, Scocco V, Mazzanti M, Purcaro A (1992) [Effects of aerobic training in patients with moderate chronic heart failure]. G Ital Cardiol 22:919–930PubMedGoogle Scholar
  6. 6.
    Bergh U, Sjodin B, Forsberg A, Svedenhag J (1991) The relationship between body mass and oxygen uptake during running in humans. Med Sci Sports Exerc 23:205–211PubMedGoogle Scholar
  7. 7.
    Bevegard S, Holmgren A, Jonsson B (1963) Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position. Acta Physiol Scand 57:26–50PubMedGoogle Scholar
  8. 8.
    Borg G, Noble B (1974) Perceived exertion. Exerc Sports Sci Rev 2:131–153Google Scholar
  9. 9.
    Bruce RA (1971) Exercise testing of patients with coronary heart disease. Principles and normal standards for evaluation. Ann Clin Res 3:323–332PubMedGoogle Scholar
  10. 10.
    Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ (1983) Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 55:1558–1564PubMedGoogle Scholar
  11. 11.
    Bunc V, Heller J, Leso J (1988) Kinetics of heart rate responses to exercise. J Sports Sci 6:39–48PubMedGoogle Scholar
  12. 12.
    Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M (1992) A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med 13:518–522PubMedCrossRefGoogle Scholar
  13. 13.
    Coen B (1997) Individuelle anaerobe Schwelle — Methodik und Anwendung in der sportmedizinischen Leistungsdiagnostik und Trainingssteuerung leichtathletischer Laufdisziplinen. Sport und Buch, Strauss, KölnGoogle Scholar
  14. 14.
    Coen B, Schwarz L, Urhausen A, Kindermann W (1991) Control of training in middle-and long-distance running by means of the individual anaerobic threshold. Int J Sports Med 12:519–524PubMedGoogle Scholar
  15. 15.
    Coen B, Urhausen A, Kindermann W (1988) Value of the Conconi test for determination of the anaerobic threshold. Int J Sports Med 9:372Google Scholar
  16. 16.
    Conconi F, Ferrari M, Ziglio P, Droghetti P, Codeca L (1982) Determination of the anaerobic threshold by a noninvasive field test in runners. J Appl Physiol 52:869–873PubMedGoogle Scholar
  17. 17.
    Conconi F, Grazzi G, Casoni I, Guglielmini C, Borsetto C, Ballarin E, Mazzoni G, Patracchini M, Manfredini F (1996) The Conconi test: methodology after 12 years of application. Int J Sports Med 17:509–519PubMedCrossRefGoogle Scholar
  18. 18.
    Cooper KH (1968) Aerobics. Bantam Books, New YorkGoogle Scholar
  19. 19.
    Coyle EF (2005) Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol 98:2191–2196PubMedCrossRefGoogle Scholar
  20. 20.
    Cumming GR, Borsyk LM (1972) Criteria for maximum oxygen uptake in men over 40 in a population survey. Med Sci Sports Exerc 4:18–20Google Scholar
  21. 21.
    Davies B, Dagget A, Jakeman P, Mulhall J (1984) Maximum oxygen uptake utilizing different treadmill protocols. Br J Sports Med 18:74–79PubMedCrossRefGoogle Scholar
  22. 22.
    Davis JA, Frank MH, Whipp BJ, Wasserman K (1979) Anaerobic threshold alterations caused by endurance training in middle-aged men. J Appl Physiol 46:1039–1046PubMedGoogle Scholar
  23. 23.
    Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89:281–288PubMedCrossRefGoogle Scholar
  24. 24.
    Dickhuth H-H, Huonker M, Münzel T, Drexler H, Berg A, Keul J (1991) Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunction. In: Bachl N, Graham TE, Löllgen H: Advances in Ergometry. Springer, Berlin, S 173–179Google Scholar
  25. 25.
    Dickhuth HH, Yin L, Niess A, Rocker K, Mayer F, Heitkamp HC, Horstmann T (1999) Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med 20:122–127PubMedCrossRefGoogle Scholar
  26. 26.
    Dickstein K, Barvik S, Aarsland T, Snapinn S, Karlsson J (1990) A comparison of methodologies in detection of the anaerobic threshold. Circulation 81:II38–II46PubMedGoogle Scholar
  27. 27.
    Dobeln WV, Astrand I, Bergstrom A (1967) An analysis of age and other factors related to maximal oxygen uptake. J Appl Physiol 22:934–938Google Scholar
  28. 28.
    Doherty M, Nobbs L, Noakes TD (2003) Low frequency of the “plateau phenomenon” during maximal in elite British athletes. Eur J Appl Physiol 89:619–623PubMedCrossRefGoogle Scholar
  29. 29.
    Duncan GE, Howley ET, Johnson BN (1997) Applicability of VO2max criteria: discontinuous versus continuous protocols. Med Sci Sports Exerc 29:273–278PubMedGoogle Scholar
  30. 30.
    European Society of Cardiology, Task Force (1997) Management of stable angina pectoris. Eur Heart J 18:394–413Google Scholar
  31. 31.
    Faude O, Meyer T, Kindermann W (2006) The work rate corresponding to ventilatory threshold during steady-state and ramp exercise. Int J Sports Physiol Perform 1:222–232PubMedGoogle Scholar
  32. 32.
    Froelicher VF Jr, Brammell H, Davis G, Noguera I, Stewart A, Lancaster MC (1974) A comparison of the reproducibility and physiologic response to three maximal treadmill exercise protocols. Chest 65:512–517PubMedCrossRefGoogle Scholar
  33. 33.
    Froelicher VF Jr, Brammell H, Davis G, Noguera I, Stewart A, Lancaster MC (1974) A comparison of three maximal treadmill exercise protocols. J Appl Physiol 36:720–725PubMedGoogle Scholar
  34. 34.
    Gaskill SE, Walker AJ, Serfass RA, Bouchard C, Gagnon J, Rao DC, Skinner JS, Wilmore JH, Leon AS (2001) Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE family study. Int J Sports Med 22:586–592PubMedCrossRefGoogle Scholar
  35. 35.
    Gitt AK, Winter UJ, Fritsch J, Pothoff G, Sedlak M, Ehmanns S, Ostmann H, Hilger HH (1994) Vergleich der vier verschiedenen Methoden zur respiratorischen Bestimmung der anaeroben Schwelle bei Normalpersonen, Herz-und Lungenkranken. Z Kardiol 83(Suppl 3):37–42PubMedGoogle Scholar
  36. 36.
    Haass M, Zugck C, Kübler W (2000) Der 6-Minuten-Gehtest: Eine kostengünstige Alternative zur Spiroergometrie bei Patienten mit chronischer Herzinsuffizienz? Z Kardiol 89:72–80PubMedCrossRefGoogle Scholar
  37. 37.
    Hawley JA, Noakes TD (1992) Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol 65:79–83CrossRefGoogle Scholar
  38. 38.
    Heil DP (1997) Body mass scaling of peak oxygen uptake in 20-to 79-yr-old adults. Med Sci Sports Exerc 29:1602–1608PubMedGoogle Scholar
  39. 39.
    Hermansen L, Saltin B (1969) Oxygen uptake during maximal treadmill and bicycle exercise. J Appl Physiol 26:31–37PubMedGoogle Scholar
  40. 40.
    Hoff J (2005) Training and testing physical capacities for elite soccer players. J Sports Sci 23:573–582PubMedCrossRefGoogle Scholar
  41. 41.
    Hollmann W (1963) Höchst-und Dauerleistungsfähigkeit des Sportlers. Barth, MünchenGoogle Scholar
  42. 42.
    Hoogeveen AR, Hoogsteen GS (1999) The ventilatory threshold, heart rate, and endurance performance: relationships in elite cyclists. Int J Sports Med 20:114–117PubMedCrossRefGoogle Scholar
  43. 43.
    Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Medicine and Science in Sports and Exercise 27:1292–1301PubMedGoogle Scholar
  44. 44.
    Hunt HA, Baker DW, Chin MH et al (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). Circulation 104:2996–3007PubMedCrossRefGoogle Scholar
  45. 45.
    Issekutz B Jr, Birkhead NC, Rodahl K (1962) Use of respiratory quotients in assessment of aerobic work capacity. J Appl Physiol 17:47–50Google Scholar
  46. 46.
    Katch V, Weltman A, Sady S, Freedson P (1978) Validity of the relative percent concept for equating training intensity. Eur J Appl Physiol 39:219–227CrossRefGoogle Scholar
  47. 47.
    Katch VL, Sady S, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14:21–25PubMedGoogle Scholar
  48. 48.
    Kindermann W (1987) Ergometrie-Empfehlungen für die ärztliche Praxis. Dtsch Z Sportmed 38:244–268Google Scholar
  49. 49.
    Kindermann W (2004) Anaerobe Schwelle. Dtsch Z Sportmed 55:161–162Google Scholar
  50. 50.
    Kindermann W, Simon G, Keul J (1979) The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol 42:25–34CrossRefGoogle Scholar
  51. 51.
    Kumagai S, Tanaka K, Matsuura Y, Matsuzaka A, Hirakoba K, Asano K (1982) Relationships of the Anaerobic Threshold with the 5 km, 10 km, and 10 Mile Races. Eur J Appl Physiol 49:13–23CrossRefGoogle Scholar
  52. 52.
    Larsen AI, Aarsland T, Kristiansen M, Haugland A, Dickstein K (2001) Assessing the effect of exercise training in men with heart failure; comparison of maximal, submaximal and endurance exercise protocols. Eur Heart J 22:684–692PubMedCrossRefGoogle Scholar
  53. 53.
    Le Jemtel TH, Mancini D, Gumbardo D, Chadwick B (1985) Pitfalls and limitations of “maximal” oxygen uptake as an index of cardiovascular functional capacity in patients with chronic heart failure. Heart Failure May/June:112–124Google Scholar
  54. 54.
    Lear SA, Brozic A, Myers JN, Ignaszewski A (1999) Exercise stress testing — an overview of current guidelines. Sports Med 27:285–312PubMedCrossRefGoogle Scholar
  55. 55.
    Lehmann M, Berg A, Kapp R, Wessinghage T, Keul J (1983) Correlations between laboratory testing and distance running performance in marathoners of similar performance ability. Int J Sports Med 4:226–230PubMedGoogle Scholar
  56. 56.
    Lentner CE (1990) Geigy Scientific Tables — Volume 5: Heart and Circulation. In: CIBA-GEIGY, Basel, S 209–213Google Scholar
  57. 57.
    Londeree BR (1997) Effect of training on lactate/ventilatory thresholds: a metaanalysis. Med Sci Sports Exerc 29:837–843PubMedGoogle Scholar
  58. 58.
    Londeree BR, Moeschberger ML (1984) Influence of age and other factors on maximal heart rate. J Cardiac Rehabil 4:44–49Google Scholar
  59. 59.
    Lucia A, Pardo J, Durantez A, Hoyos J, Chicharro JL (1998) Physiological differences between professional and elite road cyclists. Int J Sports Med 19:342–348PubMedCrossRefGoogle Scholar
  60. 60.
    Mader A, Liesen H, Heck H, Philippi H, Rost R (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Dtsch Z Sportmed 27:80–112Google Scholar
  61. 61.
    Mancini D, LeJemtel T, Aaronson K (2000) Peak VO2: a simple yet enduring standard. Circulation 101:1080–1082PubMedGoogle Scholar
  62. 62.
    Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786PubMedGoogle Scholar
  63. 63.
    McConnell TR (1988) Practical considerations in the testing of VO2max in runners. Sports Med 5:57–68PubMedCrossRefGoogle Scholar
  64. 64.
    McLellan TM (1987) The anaerobic threshold: concept and controversy. Austral J Sci Med Sport 19:3–8Google Scholar
  65. 65.
    McLellan TM, Skinner JS (1981) The use of the aerobic threshold as a basis for training. Can J Appl Sport Sci 6:197–201PubMedGoogle Scholar
  66. 66.
    Mead WF, Pyfer HR, Trombold JC, Frederick RC (1976) Successful resuscitation of two near simultaneous cases of cardiac arrest with a review of fifteen cases occurring during supervised exercise. Circulation 53:187–189PubMedGoogle Scholar
  67. 67.
    Meyer K, Hajric R, Westbrook S, Samek L, Lehmann M, Schwaibold M, Betz P, Roskamm H (1996) Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems. Eur J Appl Physiol 72:387–393CrossRefGoogle Scholar
  68. 68.
    Meyer K, Schwaibold M, Hajric R, Westbrook S, Ebfeld D, Leyk D, Roskamm H (1998) Delayed VO2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure. Med Sci Sports Exerc 30:643–648PubMedCrossRefGoogle Scholar
  69. 69.
    Meyer T, Davison RCR, Kindermann W (2005) Ambulatory gas exchange measurements — current status and future options —. Int J Sports Med 26:S19–S27PubMedCrossRefGoogle Scholar
  70. 70.
    Meyer T, Faude O (2006) Feldtests im Fußball. Dtsch Z Sportmed 57:147–148Google Scholar
  71. 71.
    Meyer T, Faude O, Scharhag J, Urhausen A, Kindermann W (2004) Is lactic acidosis a cause of exercise-induced hyperventilation at the respiratory compensation point? Br J Sports Med 38:622–625PubMedCrossRefGoogle Scholar
  72. 72.
    Meyer T, Gabriel HHW, Kindermann W (1999) Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc 31: 1342–1345PubMedCrossRefGoogle Scholar
  73. 73.
    Meyer T, Görge G, Schwaab B, Hildebrandt K, Walldorf J, Schäfer C, Kindermann I, Scharhag J, Kindermann W (2005) An alternative approach for exercise prescription and efficacy testing in patients with chronic heart failure. A randomized controlled training study. Am Heart J 149:926.e1–926.e7CrossRefGoogle Scholar
  74. 74.
    Meyer T, Kindermann M, Kindermann W (2004) Exercise programs for patients with chronic heart failure — Training methods and effects on endurance capacity. Sports Med 34:939–954PubMedCrossRefGoogle Scholar
  75. 75.
    Meyer T, Urhausen A, Kindermann W (1999) Kardiovaskuläre und metabolische Beanspruchung der dynamischen Streßechokardiographie bei Patienten mit koronarer Herzkrankheit und bei Gesunden. Z Kardiol 88:473–480PubMedCrossRefGoogle Scholar
  76. 76.
    Mitchell HH, Sproule BJ, Chapman CB (1958) The physiological meaning of the maximal oxygen intake test. J Clin Invest 37:538–547PubMedCrossRefGoogle Scholar
  77. 77.
    Myers J (2005) Applications of cardiopulmonary exercise testing in the management of cardiovascular and pulmonary disease. Int J Sports Med 26:S49–S55PubMedCrossRefGoogle Scholar
  78. 78.
    Myers J, Bellin D (2000) Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med 30:23–29PubMedCrossRefGoogle Scholar
  79. 79.
    Myers J, Buchanan N, Walsh D, Krämer M, McAuley P, Hamilton Wessler M, Frölicher VF (1991) Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 17:1334–1342PubMedCrossRefGoogle Scholar
  80. 80.
    Myers J, Walsh D, Sullivan M, Froelicher V (1990) Effect of sampling on variability and plateau in oxygen uptake. J Appl Physiol 68:404–410PubMedCrossRefGoogle Scholar
  81. 81.
    Noakes TD (1997) J. B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi. Med Sci Sports Exerc 29:571–590PubMedGoogle Scholar
  82. 82.
    Noakes TD (1998) Maximal oxygen uptake: “classical” versus “contemporary” viewpoints: a rebuttal. Med Sci Sports Exerc 30:1381–1398PubMedCrossRefGoogle Scholar
  83. 83.
    Pfitzinger P, Freedson PS (1998) The reliability of lactate measurements during exercise. Int J Sports Med 19:349–357PubMedCrossRefGoogle Scholar
  84. 84.
    Poole DC, Gaesser GA (1985) Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 58:1115–1521PubMedGoogle Scholar
  85. 85.
    Reinhard U, Muller PH, Schmulling RM (1979) Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration 38:36–42PubMedGoogle Scholar
  86. 86.
    Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:1527–1560PubMedCrossRefGoogle Scholar
  87. 87.
    Ribeiro JP, Fielding RA, Hughes V, Black A, Bochese MA, Knuttgen HG (1985) Heart rate break point may coincide with the anaerobic and not the aerobic threshold. Int J Sports Med 6:220–224PubMedCrossRefGoogle Scholar
  88. 88.
    Rickli H, Kiowski W, Brehm M, Weilenmann D, Schalcher C, Bernheim A, Öchslin E, Brunner-La Rocca HP (2003) Combining low-intensity and maximal exercise test results improves prognostic prediction in chronic heart failure. J Am Coll Cardiol 42:116–122PubMedCrossRefGoogle Scholar
  89. 89.
    Röcker K, Striegel H, Freund T, Dickhuth H-H (1994) Die funktionelle Pufferkapazität bei 400-m-Läufern, Langstreckenläufern und Untrainierten. In: Liesen H, Weiß M, Baum M: Regulations-und Repairmechanismen, 33. Deutscher Sportärztekongreß Paderborn 1993. Deutscher Ärzte Verlag, Köln, S 28–31Google Scholar
  90. 90.
    Röcker K, Striegel H, Freund T, Dickhuth HH (1994) Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals. Eur J Appl Physiol 68:430–434CrossRefGoogle Scholar
  91. 91.
    Röcker K, Schotte O, Niess AM, Horstmann T, Dickhuth HH (1998) Predicting competition performance in long-distance running by means of a treadmill test. Med Sci Sports Exerc 30:1552–1557CrossRefGoogle Scholar
  92. 92.
    Rost R, Hollmann W (1982) Belastungsuntersuchungen in der Praxis. Thieme, StuttgartGoogle Scholar
  93. 93.
    Roul G, Moulichon ME, Bareiss P, Gries P, Sacrez J, Germain P, Mossard JM, Sacrez A (1994) Exercise peak VO2 determination in chronic heart failure: is it still of value? Eur Heart J 15:495–502PubMedGoogle Scholar
  94. 94.
    Shephard RJ (1984) Tests of maximum oxygen intake — a critical review. Sports Med 1:99–124PubMedCrossRefGoogle Scholar
  95. 95.
    Shephard RJ, Allen C, Benade AJ, Davies CT, Di Prampero PE, Hedman R, Merriman JE, Myhre K, Simmons R (1968) The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ 38:757–764PubMedGoogle Scholar
  96. 96.
    Simon G, Staiger J, Wehinger A, Kindermann W, Keul J (1978) Echokardiographische Größen des linken Ventrikels, Herzvolumen und Sauerstoffaufnahme. Med Klin 73:1457–1462PubMedGoogle Scholar
  97. 97.
    Simon J, Young JL, Gutin B, Blood DK, Case RB (1983) Lactate accumulation relative to the anaerobic and respiratory compensation thresholds. J Appl Physiol 54:13–17PubMedGoogle Scholar
  98. 98.
    Stegmann H, Kindermann W (1982) Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate. Int J Sports Med 3:105–110PubMedGoogle Scholar
  99. 99.
    Stegmann H, Kindermann W, Schnabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 2:160–165PubMedGoogle Scholar
  100. 100.
    Tanaka H, Shindo M (1985) Running velocity at blood lactate threshold of boys aged 6–15 years compared with untrained and trained young males. Int J Sports Med 6:90–94PubMedGoogle Scholar
  101. 101.
    Tanaka K, Matsuura Y (1984) Marathon performance, anaerobic threshold, and onset of blood lactate accumulation. J Appl Physiol 57:640–643PubMedGoogle Scholar
  102. 102.
    Tanaka K, Matsuura Y, Kumagai S, Matsuzaka A, Hirakoba K, Asano K (1983) Relationships of anaerobic threshold and onset of blood lactate accumulation with endurance performance. Eur J Appl Physiol 52:51–56CrossRefGoogle Scholar
  103. 103.
    Taylor HL, Buskirk E, Henschel A (1955) Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 8:73–80PubMedGoogle Scholar
  104. 104.
    Tokmakidis SP, Léger LA, Fotis AV, Roy JY (1987) The Conconi’s heart rate and the lactate “anaerobic threshold”. Med Sci Sports Exerc (Abstract) 19:S 17Google Scholar
  105. 105.
    Trappe H-J, Löllgen H (2000) Leitlinien zur Ergometrie. Z Kardiol 89:821–837PubMedCrossRefGoogle Scholar
  106. 106.
    Tristani FE, Hughes CV, Archibald DG, Sheldahl LM, Cohn JN, Fletcher R (1987) Safety of graded symptom-limited exercise testing in patients with congestive heart failure. Circulation 76:Vi54–58PubMedGoogle Scholar
  107. 107.
    Urhausen A, Coen B, Kindermann W (2000) Individual assessment of the aerobic-anaerobic threshold by measurement of blood lactate. In: Garrett W Jr, Kirkendall D, Squire D: Textbook of Sports Medicine. Williams & Wilkins, Philadelphia, S. 267–275Google Scholar
  108. 108.
    Urhausen A, Coen B, Weiler B, Kindermann W (1993) Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med 14:134–139PubMedGoogle Scholar
  109. 109.
    Wasserman K (1999) Principles of exercise testing and interpretation. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  110. 110.
    Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB (1994) Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol 83(Suppl 3):1–12PubMedGoogle Scholar
  111. 111.
    Wasserman K, Whipp BJ, Koyl SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35:236–243PubMedGoogle Scholar
  112. 112.
    Weltman A, Snead D, Seip R, Schurrer R, Weltman J, Rutt R, Rogol A (1990) Percentages of maximal heart rate, heart rate reserve, and VO2max for determining endurance training intensity in male runners. Int J Sports Med 11:218–222PubMedGoogle Scholar
  113. 113.
    Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D, Kaiser D, Rogol A (1989) Percentages of maximal heart rate, heart rate reserve, and VO2peak for determining endurance training intensity in sedentary women. Int J Sports Med 10:212–216PubMedGoogle Scholar
  114. 114.
    Winter UJ (1994) Methodische Aspekte der modernen, computerisierten Ergospirometrie (CPX): Rampenprogramm, konstanter Belastungstest und CO2-Rückatmungsmethode. Z Kardiol 83:13–26PubMedGoogle Scholar
  115. 115.
    Yamamoto Y, Miyashita M, Hughson RL, Tamura S, Shinohara M, Mutoh Y (1991) The ventilatory threshold gives maximal lactate steady state. Eur J Appl Physiol 63:55–59CrossRefGoogle Scholar
  116. 116.
    Zhou S, Weston SB (1997) Reliability of using the D-max method to define physiological responses to incremental exercise testing. Physiol Meas 18:145–154PubMedCrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag Darmstadt 2007

Authors and Affiliations

  1. 1.Sportmedizin, Department Sport & GesundheitUniversität PaderbornPaderborn

Personalised recommendations