Advertisement

Simulation as a Terminal-Planning Approach

  • Nils Kemme
Chapter
Part of the Contributions to Management Science book series (MANAGEMENT SC.)

Abstract

As container terminals are systems with high degrees of complexity, dynamics and stochastic relations, simulation is often considered to be the method of choice for analysing all kinds of planning problems at seaport container terminals. In this chapter, the use of simulation for investigating strategical and operational planning problems of automated RMGC systems is addressed. It is started with a brief introduction to the field of simulation analysis, which is followed by a review of existing simulation studies with respect to concepts, assumptions and possible shortcomings of the implemented simulation models. Based on this literature review as well as generally accepted guidelines for the design of simulation models, some basic principles for a new simulation model addressing the research questions of this work are summarised. The chapter is closed with an introduction to conceptual design, main features, assumptions and limitations as well as validation and verification aspects of the RMGC-simulation model that is actually used for the simulation study of this work.

Keywords

Container Terminal Crane Operation Feeder Vessel Vehicle Arrival Expert Validation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alessandri, A., Sacone, S., & Siri, S. (2007). Modelling and optimal receding-horizon control of maritime container terminals. Journal of Mathematical Modelling and Algorithms, 6(1), 109–133.CrossRefGoogle Scholar
  2. Bangsow, S. (2008). Fertigungssimulation mit Plant Simulation und SimTalk. Munich: Carl Hansner Verlag.Google Scholar
  3. Banks, J., Carson, J., Nelson, B. L., & Nicol, D. (2004). Discrete-event system simulation (4th ed.). Saddle River, NJ: Prentice Hall.Google Scholar
  4. Borgman, B., van Asperen, E., & Dekker, R. (2010). Online rules for container stacking. OR Spectrum, 32(3), 687–716.CrossRefGoogle Scholar
  5. Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.CrossRefGoogle Scholar
  6. Bruzzone, A. G., Giribone, P., & Revetria, R. (1999). Operative requirements and advances for the new generation simulators in multimodal container terminals. In P. A. Farrington, H. B. Nembhard, D. T. Sturrock, & G. W. Evans (Eds.), Proceedings of the 1999 winter simulation conference (pp. 1234–1252). New York: IEEE Conference Publications.Google Scholar
  7. Carrol, J. K., Thomas, J. C., & Malhotra, A. (1980). Presentation and representation in design problem solving. British Journal of Psychology, 71(1), 143–153.CrossRefGoogle Scholar
  8. Choe, R., Park, T., Seung, M. O., & Kwang, R. R. (2007). Real-time scheduling for non-crossing stacking cranes in an automated container terminal. In M. A. Orgun & J. Thornton (Eds.), AI 2007: Advances in artificial intelligence, Vol. 4830 of Lecture notes in computer science (pp. 625–631). Berlin: Springer.CrossRefGoogle Scholar
  9. Dai, J., Lin, W., Moorthy, R., & Teo, C.-P. (2008). Berth allocation planning optimization in container terminals. In C. S. Tang, C.-P. Teo, K.-K. Wei, & F. S. Hillier (Eds.), Supply chain analysis, Vol. 119 of International series in operations research & management science (pp. 69–104). Berlin: Springer.Google Scholar
  10. Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.CrossRefGoogle Scholar
  11. Domschke, W., & Drexl, A. (2011). Einführung in das Operations Research (8th ed.). Berlin: Springer.Google Scholar
  12. Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectrum, 32(3), 617–632.CrossRefGoogle Scholar
  13. Duinkerken, M. B., & Ottjes, J. A. (2000). A simulation model for automated container terminals. In Proceedings of advanced simulation technology conference, Washington, D.C.Google Scholar
  14. Fink, A., Voß, S., & Schneidereit, G. (2005). Grundlagen der Wirtschaftsinformatik (2nd ed.). Heidelberg: Physica.Google Scholar
  15. Hall, N. G., & Posner, M. E. (2001). Generating experimental data for computational testing with machine scheduling applications. Operations Research, 49(6), 854–865.CrossRefGoogle Scholar
  16. Hartmann, S. (2004). Generating scenarios for simulation and optimization of container terminal logistics. OR Spectrum, 26(2), 171–192.CrossRefGoogle Scholar
  17. Hartmann, S., Briskorn, D., & Kemme, N. (2007). Simulation und optimierung fahrerloser transportsysteme. Industrie Management, 23(4), 37–40.Google Scholar
  18. Kemme, N. (2011c). RMGC simulation model – documentation of a simulation model for automated rail-mounted-gantry-crane systems at seaport container terminals. Institute for Operations Research, University of Hamburg. www.uni-hamburg.de/OR/RMGC-Simulation, Accessed 09 September 2011.
  19. Kleijnen, J. P. C. (1999). Validation of models: statistical techniques and data availability. In P. A. Farrington, H. B. Nembhard, D. T. Sturrock, & G. W. Evans (Eds.), Proceedings of the 1999 winter simulation conference, Phoenix, AZ (pp. 647–654).Google Scholar
  20. Kolisch, R., & Sprecher, A. (1995). Characterization and generation of a general class of resource-constrained project scheduling problems. Management Science, 41(10), 1693–1704.CrossRefGoogle Scholar
  21. Law, A. M. (2009). How to build valid and credible simulation models. In M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, & R. G. Ingalls (Eds.), Proceedings of the 2009 winter simulation conference, Austin, TX (pp. 24–32).CrossRefGoogle Scholar
  22. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). Boston, MA: McGraw Hill.Google Scholar
  23. Legato, P., & R. M. Mazza (2001). Berth Planning and Resources Optimisation at a Container Terminal via Discrete Event Simulation. European Journal of Operational Research, 133(3), 537–547.CrossRefGoogle Scholar
  24. Liu, C.-I., Jula, H., & Ioannou, P. A. (2002). Design, simulation and evaluation of automated container terminals. IEEE Transactions on Intelligent Transportation Systems, 3(1), 12–26.CrossRefGoogle Scholar
  25. Musselman, K. J. (1994). Guidelines for simulation project success. In M. S. Manivannan & J. D. Tew (Eds.), Proceedings of the 26th conference on winter simulation (pp. 88–95). San Diego, CA: Society for Computer Simulation International.CrossRefGoogle Scholar
  26. Nazari, D. (2005). Evaluating Container Yard Layout – A Simulation Approach. Master Thesis, Erasmus University Rotterdam.Google Scholar
  27. Oakshott, L. (1996). Business modelling and simulation. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  28. Ottjes, J. A., Veeke, H. P. M., Duinkerken, M. B., Rijsenbrij, J. C., & Lodewijks, G. (2007). Simulation of a multiterminal system for container handling. In K. H. Kim & H.-O. Günther (Eds.), Container terminals and cargo systems (pp. 15–36). Berlin: Springer.CrossRefGoogle Scholar
  29. Park, S. K., & Miller, K. W. (1988). Random number generators: good ones are hard to find. Communications of the ACM, 31(10), 1192–1201.CrossRefGoogle Scholar
  30. Park, T., Choe, R., Ok, S., & Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum, 32(3), 593–615.CrossRefGoogle Scholar
  31. Park, T., Choe, R., Kim, Y. H., & Ryu, K. R. (2011). Dynamic adjustment of container stacking policy in an automated container terminal. International Journal of Production Economics, 133(1), 385–392.CrossRefGoogle Scholar
  32. Parola, F., & Sciomachen, A. (2005). Intermodal container flows in a port system network: analysis of possible growths via simulation models. International Journal of Production Economics, 97(1), 75–88.CrossRefGoogle Scholar
  33. Petering, M. E. H. (2009). Effect of block width and storage yard layout on marine container terminal performance. Transportation Research Part E: Logistics and Transportation Review, 45(4), 591–610.CrossRefGoogle Scholar
  34. Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.CrossRefGoogle Scholar
  35. Pirkul, H., Gupta, R., & Rolland, E. (1999). VisOpt: a visual interactive optimization tool for P-Median problems. Decision Support Systems, 26(3), 209–223.CrossRefGoogle Scholar
  36. Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.Google Scholar
  37. Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.Google Scholar
  38. Saanen, Y. A. (2011). Modeling techniques in planning of terminals: the quantitative approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 83–102). Berlin: Springer.CrossRefGoogle Scholar
  39. Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking alternatives by means of simulation. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 winter simulation conference, Orlando, FL (pp. 1567–1576).CrossRefGoogle Scholar
  40. Saanen, Y. A., Verbraeck, A., & Rijsenbrij, J. (2000). The application of advanced simulations for the engineering of logistic control systems. In K. Mertins & M. Rabe (Eds.), The new simulation in production and logistics - prospects, views and attitudes. (pp. 217–231). Berlin: IPK.Google Scholar
  41. Schütt, H. (2011). Simulation technology in planning, implementation and operation of container terminals. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 103–116). Berlin: Springer.CrossRefGoogle Scholar
  42. Speer, U., John, G., & Fischer, K. (2011). Scheduling yard cranes considering crane interference. In J. Böse, H. Hu, C. Jahn, X. Shi, R. Stahlbock, & S. Voß (Eds.), Computational logistics, Vol. 6971 of Lecture notes in computer science (pp. 321–340). Berlin: Springer.CrossRefGoogle Scholar
  43. Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.CrossRefGoogle Scholar
  44. Valkengoed, M. P. J. v. (2004). How passing cranes influence stack operations in a container terminal: a simulation study. Diploma Thesis, University of Amsterdam.Google Scholar
  45. Vis, I. F. A., & Harika, I. (2004). Comparison of vehicle types at an automated container terminal. OR Spectrum, 26(1), 117–143.CrossRefGoogle Scholar
  46. Voß, S., & Gutenschwager, K. (2001). Infomationsmanagement. Berlin: Springer.CrossRefGoogle Scholar
  47. Voogd, P., R. Dekker, & Meersmans, P. J. M. (1999). FAMAS-Newcon: A Generator Program for Stacking in the Reference Case. Econometric Institute Report EI 9943-/A, Erasmus University of Rotterdam.Google Scholar
  48. Wiese, J., Suhl, L., & Kliewer, N. (2009b). Mathematical programming and simulation based layout planning of container terminals. International Journal of Simulation and Process Modelling, 5(4), 313–323.CrossRefGoogle Scholar
  49. Winston, W. L. (2004). Operations research – applications and algorithms (4th ed.). Belmont, CA: Thomson Learning.Google Scholar
  50. Zauner, T. (2005). Implementierung eines Multiagentensystems zur Simulation von Containerterminalprozessen. Ph.D. Thesis, Georg-August-Universität Göttingen Zentrum für Informatik, Göttingen.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Kemme
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations