Skip to main content

Operational RMGC-Planning Problems

  • Chapter
  • First Online:
Book cover Design and Operation of Automated Container Storage Systems

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

Abstract

The operational performance of automated RMGC systems is to a large extent determined by the planning strategies applied for container stacking, crane scheduling and crane routing. In the present chapter, these operational planning problems are addressed in depth. It is started with the container-stacking problem. After reviewing and classifying existing stacking strategies, a new stacking approach is presented, which allows for a weighted combination of different stacking strategies, and a procedure for generating and scheduling housekeeping moves is introduced. Thereafter, the crane-scheduling problem is addressed. After this problem is discussed and an overview on known solution approaches is given, some new scheduling strategies are presented which are based on priority rules, integer programming, enumeration and genetic algorithms. Finally, the problem of routing RMGCs is introduced, relevant literature for that problem is discussed and different claiming-based routing strategies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The kinematic equations for the computation of driving, acceleration and deceleration times as well as for acceleration and deceleration distances (Hering et al. 2009) can be used to compute the time duration for movements of a steadily accelerated/decelerated portal, trolley and spreader between two positions as

    $$m = \frac{v} {a} + \frac{1} {v} \times \left (l -\frac{{v}^{2}} {2a} -\frac{{v}^{2}} {2b}\right ) + \frac{v} {b},$$

    where the time for acceleration to the maximum velocity, the driving time with the maximum velocity and the time for deceleration to the stop are given by the first, second and third terms of the sum. Simplifying this equation yields

    $$m = \frac{l} {v} + \frac{v} {2a} + \frac{v} {2b}.$$

References

  • Aydin, C. (2007). Improved Rehandling Strategies for Container Retrieval Process. Master Thesis, Graduate School of Engineering and Natural Sciences, Sabanci University, Istanbul.

    Google Scholar 

  • Bohrer, P. (2010). Crane scheduling in container terminals: mathematical models, heuristics and algorithms. Saarbrücken: VDM Verlag Dr. Müller.

    Google Scholar 

  • Borgman, B., van Asperen, E., & Dekker, R. (2010). Online rules for container stacking. OR Spectrum, 32(3), 687–716.

    Article  Google Scholar 

  • Böse, J. W., Reiners, T., Steenken, D., & Voß, S. (2000). Vehicle dispatching at seaport container terminals using evolutionary algorithms. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).

    Google Scholar 

  • Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.

    Article  Google Scholar 

  • Cao, Z., Lee, D.-H., & Meng, Q. (2008). Deployment strategies of double-rail-mounted gantry crane systems for loading outbound containers in container terminals. International Journal of Production Economics, 115(1), 221–228.

    Article  Google Scholar 

  • Carlo, H. J., & Vis, I. F. A. (2008). Routing new types of stacking crane configurations at container terminals. In K. Ellis, R. Meller, M. K. Ogle, B. A. Peter, G. D. Taylor, & J. S. Usher (Eds.), Progress in material handling reserach (pp. 55–70). Charlotte: Material Handling Institute.

    Google Scholar 

  • Caserta, M., Voß, S., & Sniedovich, M. (2011). Applying the corridor method to a blocks relocation problem. OR Spectrum, 33(4), 885–914.

    Article  Google Scholar 

  • Chen, T. (1999). Yard Operations in the Container Terminal –A Study in the ’Unproductive Moves’. Maritime Policy & Management, 26(1), 27–38.

    Article  Google Scholar 

  • Chen, T., Lin, K., & Juang, Y.-C. (2000). Empirical studies on yard operations part 2: quantifying unproductive moves undertaken in quay transfer operations. Maritime Policy & Management, 27(2), 191–207.

    Article  Google Scholar 

  • Choe, R., Park, T., Seung, M. O., & Kwang, R. R. (2007). Real-time scheduling for non-crossing stacking cranes in an automated container terminal. In M. A. Orgun & J. Thornton (Eds.), AI 2007: Advances in artificial intelligence, Vol. 4830 of Lecture notes in computer science (pp. 625–631). Berlin: Springer.

    Chapter  Google Scholar 

  • Croce, F. D., Tadei, R., & Volta, G. (1995). A genetic algorithm for the job shop problem. Computers & Operations Research, 22(1), 15–24.

    Article  Google Scholar 

  • De Castilho, B., & Daganzo, C. F. (1993). Handling strategies for import containers at marine terminals. Transportation Research Part B: Methodological, 27(2), 151–166.

    Article  Google Scholar 

  • Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.

    Article  Google Scholar 

  • Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectrum, 32(3), 617–632.

    Article  Google Scholar 

  • Duinkerken, M. B., Evers, J. J. M., & Ottjes, J. A. (2001). A simulation model for integrating quay transport and stacking policies on automated container terminals. In Proceedings of the 15th european simulation multiconference, Prague (pp. 909–916).

    Google Scholar 

  • Froyland, G., Koch, T., Megow, N., Duane, E., & Wren, H. (2008). Optimizing the landside operation of a container terminal. OR Spectrum, 30(1), 53–75.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability – a guide to the theory of NP-completeness. San Francisco, CA: Freeman.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley Longman.

    Google Scholar 

  • Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In G. J. E. Rawlins (Ed.), Foundations of genetic algorithms (pp. 69–93). Waltham, MA: Morgan Kaufmann.

    Google Scholar 

  • Grötschel, M., Krumke, S. O., Rambau, J., Winter, T., & Zimmermann, U. (2001). Combinatorial online optimization in real time. In M. Grötschel, S. O. Krumke, & J. Rambau (Eds.), Online optimization of large scale systems (pp. 679–704). Berlin: Springer.

    Chapter  Google Scholar 

  • Han, Y., Lee, L., Chew, E., & Tan, K. (2008). A yard storage strategy for minimizing traffic congestion in a marine container transshipment hub. OR Spectrum, 30(4), 697–720.

    Article  Google Scholar 

  • Hering, E., Martin, R., & Stohrer, M. (2009). Taschenbuch der Mathematik und Physik (5th ed.). Berlin: Springer.

    Book  Google Scholar 

  • Hirashima, Y. (2008). A Q-learning system for container transfer scheduling based on shipping order at container terminals. International Journal of Innovative Computing, Information and Control, 4(3), 547–558.

    Google Scholar 

  • Hirashima, Y. (2009). A Q-learning system for container marshalling with group-based learning model at container yard terminals. In Proceedings of the international multi-conference of engineers and computer scientist (pp. 18–20).

    Google Scholar 

  • Hirashima, Y., Takeda, K., Harada, S., Deng, M., & Inoue, A. (2006). A Q-learning for group-based plan of container transfer scheduling. JSME International Journal Series C, 49(2), 473–479.

    Article  Google Scholar 

  • Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: MIT.

    Google Scholar 

  • Jung, S. H., & Kim, K. H. (2006). Load scheduling for multiple quay cranes in port container terminals. Journal of Intelligent Manufacturing, 17(4), 479–492.

    Article  Google Scholar 

  • Kang, J., Oh, M.-S., Ahn, E. Y., Ryu, K. R., & Kim, K. H. (2006). Planning for intra-block remarshalling in a container terminal. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, Volume 4031 of Lecture notes in computer science (pp. 1211–1220). Berlin: Springer.

    Chapter  Google Scholar 

  • Kang, J., Ryu, K. R., & Kim, K. H. (2006a). Deriving stacking strategies for export containers with uncertain weight information. Journal of Intelligent Manufacturing, 17(4), 399–410.

    Article  Google Scholar 

  • Kang, J., Ryu, K. R., & Kim, K. H. (2006b). Determination of storage locations for incoming containers of uncertain weight. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, Vol. 4031 of Lecture notes in computer science (pp. 1159–1168). Berlin: Springer.

    Chapter  Google Scholar 

  • Kemme, N. (2011b). RMG crane scheduling and stacking: overview and implications on terminal planning. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 271–301). Berlin: Springer.

    Chapter  Google Scholar 

  • Kemme, N. (2011c). RMGC simulation model – documentation of a simulation model for automated rail-mounted-gantry-crane systems at seaport container terminals. Institute for Operations Research, University of Hamburg. www.uni-hamburg.de/OR/RMGC-Simulation, Accessed 09 September 2011.

  • Kim, K. H. (1997). Evaluating the number of rehandles in container yards. Computer and Industrial Engineering, 32(4), 701–711.

    Article  Google Scholar 

  • Kim, K. H., & Bae, J. W. (1998). Re-marshalling export containers in port container terminals. Computer and Industrial Engineering, 35(3/4), 655–658.

    Article  Google Scholar 

  • Kim, K. H., & Hong, G.-P. (2006). A heuristic rule for relocating blocks. Computers and Operations Research, 33(4), 940–954.

    Article  Google Scholar 

  • Kim, K. H., & Kim, H. B. (1999a). Segregating space allocation models for container inventories in port container terminals. International Journal of Production Economics, 59(1–3), 415–423.

    Google Scholar 

  • Kim, K. H., & Kim, K. Y. (1999b). An optimal routing algorithm for a transfer crane in port container terminals. Transportation Science, 33(1), 17–33.

    Article  Google Scholar 

  • Kim, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 124(1), 89–100.

    Article  Google Scholar 

  • Kim, K. H., Wang, S. J., Park, Y.-M., Yang, C.-H., & Bae, J. W. (2002). A simulation study on operation rules for automated container yards. In Proceedings of the 7th annual international conference on industrial engineering, Busan (pp. 250–253).

    Google Scholar 

  • Kim, K. H., Kang, J. S., & Ryu, K. R. (2004). A beam search algorithm for the load sequencing of outbound containers in port container terminals. In H.-O. Günther & K. H. Kim (Eds.), Container terminals and automated transport systems (pp. 183–206). Berlin: Springer.

    Google Scholar 

  • Kim, K. Y., & Kim, K. H. (1997). A routing algorithm for a single transfer crane to load export containers onto a containership. Computer and Industrial Engineering, 33(3/4), 673–676.

    Article  Google Scholar 

  • Kim, K. Y., & Kim, K. H. (2003). Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals. Naval Research Logistics, 50(5), 498–514.

    Article  Google Scholar 

  • Kozan, E., & Preston, P. (1999). Genetic algorithms to schedule container transfers at multi-modal terminals. International Transactions in Operational Research, 6(3), 311–329.

    Article  Google Scholar 

  • Lee, D.-H., Meng, Q., & Cao, Z. (2006). Scheduling of multiple-yard crane system with container loading sequence consideration. In TRB 85th annual meeting compendium of papers CD-ROM (pp. 1–16).

    Google Scholar 

  • Lee, D.-H., Cao, Z., & Meng, Q. (2007). Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm. International Journal of Production Economics, 107(1), 115–124.

    Article  Google Scholar 

  • Lee, L. H., Chew, E. P. Tan, K. C., & Han, Y. (2006). An optimization model for storage yard management in transshipment hubs. OR Spectrum, 28(4), 539–561.

    Article  Google Scholar 

  • Lee, Y., & Hsu, N.-Y. (2007). An optimization model for the container pre-marshalling problem. Computers and Operations Research, 34(11), 3295–3313.

    Article  Google Scholar 

  • Li, W., Wu, Y., Petering, M. E. H., Goh, M., & de Souza, R. (2009). Discrete time model and algorithms for container yard crane scheduling. European Journal of Operational Research, 198(1), 165–172.

    Article  Google Scholar 

  • Linn, R. J., & Zhang, C.-Q. (2003). A heuristic for dynamic yard crane deployment in a container terminal. IIE Transactions, 35(2), 161–174.

    Article  Google Scholar 

  • Meersmans, P. J. M. (2002). Optimization of container handling systems. Ph.D. Thesis, Tinbergen Institute, Rotterdam.

    Google Scholar 

  • Mühlenbein, H. (1997). Genetic algorithms. In E. H. L. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 137–171). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Mühlenbein, H., & Schlierkamp-Voosen, D. (1995). Analysis of selection, mutation and recombination in genetic algorithms. In W. Banzhaf & F. Eeckman (Eds.), Evolution and biocomputation, Vol. 899 of Lecture notes in computer science (pp. 142–168). Berlin: Springer.

    Chapter  Google Scholar 

  • Murty, K. G., Liu, J., Wan, Y.-W., & Linn, R. (2005). a decision support system for operations in a container terminal. Decision Support Systems, 39(3), 309–332.

    Google Scholar 

  • Narasimhan, A., & Palekar, U. S. (2002). Analysis and algorithms for the transtainer routing problem in container port operations. Transportation Science, 36(1), 63–78.

    Article  Google Scholar 

  • Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.

    Article  Google Scholar 

  • Ng, W. C., & Mak, K. L. (2005a). An effective heuristic for scheduling a yard crane to handle jobs with different ready times. Engineering Optimization, 37(8), 867–877.

    Article  Google Scholar 

  • Ng, W. C., & Mak, K. L. (2005b). Yard crane scheduling in port container terminals. Applied Mathematical Modelling, 29(3), 263–276.

    Article  Google Scholar 

  • Park, B., Choi, H., Kwon, H., & Kang, M. (2006). Simulation analysis on effective operation of handling equipments in automated container terminal. In A. Sattar & B.-H. Kang (Eds.), AI 2006: Advances in artificial intelligence, Vol. 4304 of Lecture notes in computer science (pp. 1231–1238). Berlin: Springer.

    Chapter  Google Scholar 

  • Park, T., Choe, R., Ok, S., & Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum, 32(3), 593–615.

    Article  Google Scholar 

  • Park, T., Choe, R., Kim, Y. H., & Ryu, K. R. (2011). Dynamic adjustment of container stacking policy in an automated container terminal. International Journal of Production Economics, 133(1), 385–392.

    Article  Google Scholar 

  • Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.

    Article  Google Scholar 

  • Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.

    Google Scholar 

  • Saanen, Y. A., & Dekker, R. (2006a). Intelligent stacking as way out of congested yards? Part1. Port Technology International, 31 (pp. 87–92).

    Google Scholar 

  • Saanen, Y. A., & Dekker, R. (2006b). Intelligent stacking as way out of congested yards? Part2. Port Technology International, 32 (pp. 80–86).

    Google Scholar 

  • Saanen, Y. A., van Meel, J., & Verbraeck, A. (2003). The design and assessement of next generation automated container terminals. In A. Verbraeck & V. Hlupic (Eds.), Proceedings 15th European simulation symposium, Delft (pp. 1–8).

    Google Scholar 

  • Sniedovich, M., & Voß, S. (2006). The corridor method: a dynamic programming inspired metaheuristic. Control and Cybernetics, 35(2), 551–578.

    Google Scholar 

  • Speer, U., John, G., & Fischer, K. (2011). Scheduling yard cranes considering crane interference. In J. Böse, H. Hu, C. Jahn, X. Shi, R. Stahlbock, & S. Voß (Eds.), Computational logistics, Vol. 6971 of Lecture notes in computer science (pp. 321–340). Berlin: Springer.

    Chapter  Google Scholar 

  • Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.

    Article  Google Scholar 

  • Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research - a classification and literature review. OR Spectrum, 26(1), 3–49.

    Article  Google Scholar 

  • Taleb-Ibrahimi, M., de Castilho, B., & Daganzo, C. F. (1993). Storage space vs handling work in container terminals. Transportation Research Part B: Methodological, 27(1), 13–32.

    Article  Google Scholar 

  • Urlings, T., Ruiz, R., & Serifoglu, F. S. (2010). Genetic algorithms with different representation schemes for complex hybrid flexible flow line problems. International Journal Metaheuristics, 1(1), 30–54.

    Article  Google Scholar 

  • Valkengoed, M. P. J. v. (2004). How passing cranes influence stack operations in a container terminal: a simulation study. Diploma Thesis, University of Amsterdam.

    Google Scholar 

  • Vis, I. F. A., & Carlo, H. J. (2010). Sequencing two cooperating automated stacking cranes in a container terminal. Transportation Science, 44(2), 169–182.

    Article  Google Scholar 

  • Vis, I. F. A., & Roodbergen, K. J. (2009). Scheduling of container storage and retrieval. Operations Research, 57(2), 456–467.

    Article  Google Scholar 

  • Voß, S. (2001). Meta-heuristics: The state of the art. In A. Nareyek (Ed.), Local search for planning and scheduling, Vol. 2148 of Lecture notes in computer science (pp. 1–23). Berlin: Springer.

    Chapter  Google Scholar 

  • Zhang, C., Wan, Y.-W., Liu, J., & Linn, R. J. (2002). Dynamic crane deployment in container storage yards. Transportation Research Part B: Methodological, 36(6), 537–555.

    Article  Google Scholar 

  • Zhang, C., Chen, W., Shi, L., & Zheng, L. (2010). A note on deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 205(2), 483–485.

    Article  Google Scholar 

  • Zyngiridis, I. (2005). Optimizing Container Movements Using one and two Automated Stacking Cranes. Master Thesis, Naval Postgraduate School Monterry, Monterey, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kemme, N. (2013). Operational RMGC-Planning Problems. In: Design and Operation of Automated Container Storage Systems. Contributions to Management Science. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2885-6_5

Download citation

Publish with us

Policies and ethics