Advertisement

Operational RMGC-Planning Problems

  • Nils Kemme
Chapter
Part of the Contributions to Management Science book series (MANAGEMENT SC.)

Abstract

The operational performance of automated RMGC systems is to a large extent determined by the planning strategies applied for container stacking, crane scheduling and crane routing. In the present chapter, these operational planning problems are addressed in depth. It is started with the container-stacking problem. After reviewing and classifying existing stacking strategies, a new stacking approach is presented, which allows for a weighted combination of different stacking strategies, and a procedure for generating and scheduling housekeeping moves is introduced. Thereafter, the crane-scheduling problem is addressed. After this problem is discussed and an overview on known solution approaches is given, some new scheduling strategies are presented which are based on priority rules, integer programming, enumeration and genetic algorithms. Finally, the problem of routing RMGCs is introduced, relevant literature for that problem is discussed and different claiming-based routing strategies are presented.

Keywords

Gantry Crane Crane Schedule Export Container Transshipment Container Crane Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aydin, C. (2007). Improved Rehandling Strategies for Container Retrieval Process. Master Thesis, Graduate School of Engineering and Natural Sciences, Sabanci University, Istanbul.Google Scholar
  2. Bohrer, P. (2010). Crane scheduling in container terminals: mathematical models, heuristics and algorithms. Saarbrücken: VDM Verlag Dr. Müller.Google Scholar
  3. Borgman, B., van Asperen, E., & Dekker, R. (2010). Online rules for container stacking. OR Spectrum, 32(3), 687–716.CrossRefGoogle Scholar
  4. Böse, J. W., Reiners, T., Steenken, D., & Voß, S. (2000). Vehicle dispatching at seaport container terminals using evolutionary algorithms. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).Google Scholar
  5. Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.CrossRefGoogle Scholar
  6. Cao, Z., Lee, D.-H., & Meng, Q. (2008). Deployment strategies of double-rail-mounted gantry crane systems for loading outbound containers in container terminals. International Journal of Production Economics, 115(1), 221–228.CrossRefGoogle Scholar
  7. Carlo, H. J., & Vis, I. F. A. (2008). Routing new types of stacking crane configurations at container terminals. In K. Ellis, R. Meller, M. K. Ogle, B. A. Peter, G. D. Taylor, & J. S. Usher (Eds.), Progress in material handling reserach (pp. 55–70). Charlotte: Material Handling Institute.Google Scholar
  8. Caserta, M., Voß, S., & Sniedovich, M. (2011). Applying the corridor method to a blocks relocation problem. OR Spectrum, 33(4), 885–914.CrossRefGoogle Scholar
  9. Chen, T. (1999). Yard Operations in the Container Terminal –A Study in the ’Unproductive Moves’. Maritime Policy & Management, 26(1), 27–38.CrossRefGoogle Scholar
  10. Chen, T., Lin, K., & Juang, Y.-C. (2000). Empirical studies on yard operations part 2: quantifying unproductive moves undertaken in quay transfer operations. Maritime Policy & Management, 27(2), 191–207.CrossRefGoogle Scholar
  11. Choe, R., Park, T., Seung, M. O., & Kwang, R. R. (2007). Real-time scheduling for non-crossing stacking cranes in an automated container terminal. In M. A. Orgun & J. Thornton (Eds.), AI 2007: Advances in artificial intelligence, Vol. 4830 of Lecture notes in computer science (pp. 625–631). Berlin: Springer.CrossRefGoogle Scholar
  12. Croce, F. D., Tadei, R., & Volta, G. (1995). A genetic algorithm for the job shop problem. Computers & Operations Research, 22(1), 15–24.CrossRefGoogle Scholar
  13. De Castilho, B., & Daganzo, C. F. (1993). Handling strategies for import containers at marine terminals. Transportation Research Part B: Methodological, 27(2), 151–166.CrossRefGoogle Scholar
  14. Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.CrossRefGoogle Scholar
  15. Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectrum, 32(3), 617–632.CrossRefGoogle Scholar
  16. Duinkerken, M. B., Evers, J. J. M., & Ottjes, J. A. (2001). A simulation model for integrating quay transport and stacking policies on automated container terminals. In Proceedings of the 15th european simulation multiconference, Prague (pp. 909–916).Google Scholar
  17. Froyland, G., Koch, T., Megow, N., Duane, E., & Wren, H. (2008). Optimizing the landside operation of a container terminal. OR Spectrum, 30(1), 53–75.CrossRefGoogle Scholar
  18. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability – a guide to the theory of NP-completeness. San Francisco, CA: Freeman.Google Scholar
  19. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Boston, MA: Addison-Wesley Longman.Google Scholar
  20. Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In G. J. E. Rawlins (Ed.), Foundations of genetic algorithms (pp. 69–93). Waltham, MA: Morgan Kaufmann.Google Scholar
  21. Grötschel, M., Krumke, S. O., Rambau, J., Winter, T., & Zimmermann, U. (2001). Combinatorial online optimization in real time. In M. Grötschel, S. O. Krumke, & J. Rambau (Eds.), Online optimization of large scale systems (pp. 679–704). Berlin: Springer.CrossRefGoogle Scholar
  22. Han, Y., Lee, L., Chew, E., & Tan, K. (2008). A yard storage strategy for minimizing traffic congestion in a marine container transshipment hub. OR Spectrum, 30(4), 697–720.CrossRefGoogle Scholar
  23. Hering, E., Martin, R., & Stohrer, M. (2009). Taschenbuch der Mathematik und Physik (5th ed.). Berlin: Springer.CrossRefGoogle Scholar
  24. Hirashima, Y. (2008). A Q-learning system for container transfer scheduling based on shipping order at container terminals. International Journal of Innovative Computing, Information and Control, 4(3), 547–558.Google Scholar
  25. Hirashima, Y. (2009). A Q-learning system for container marshalling with group-based learning model at container yard terminals. In Proceedings of the international multi-conference of engineers and computer scientist (pp. 18–20).Google Scholar
  26. Hirashima, Y., Takeda, K., Harada, S., Deng, M., & Inoue, A. (2006). A Q-learning for group-based plan of container transfer scheduling. JSME International Journal Series C, 49(2), 473–479.CrossRefGoogle Scholar
  27. Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge, MA: MIT.Google Scholar
  28. Jung, S. H., & Kim, K. H. (2006). Load scheduling for multiple quay cranes in port container terminals. Journal of Intelligent Manufacturing, 17(4), 479–492.CrossRefGoogle Scholar
  29. Kang, J., Oh, M.-S., Ahn, E. Y., Ryu, K. R., & Kim, K. H. (2006). Planning for intra-block remarshalling in a container terminal. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, Volume 4031 of Lecture notes in computer science (pp. 1211–1220). Berlin: Springer.CrossRefGoogle Scholar
  30. Kang, J., Ryu, K. R., & Kim, K. H. (2006a). Deriving stacking strategies for export containers with uncertain weight information. Journal of Intelligent Manufacturing, 17(4), 399–410.CrossRefGoogle Scholar
  31. Kang, J., Ryu, K. R., & Kim, K. H. (2006b). Determination of storage locations for incoming containers of uncertain weight. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, Vol. 4031 of Lecture notes in computer science (pp. 1159–1168). Berlin: Springer.CrossRefGoogle Scholar
  32. Kemme, N. (2011b). RMG crane scheduling and stacking: overview and implications on terminal planning. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 271–301). Berlin: Springer.CrossRefGoogle Scholar
  33. Kemme, N. (2011c). RMGC simulation model – documentation of a simulation model for automated rail-mounted-gantry-crane systems at seaport container terminals. Institute for Operations Research, University of Hamburg. www.uni-hamburg.de/OR/RMGC-Simulation, Accessed 09 September 2011.
  34. Kim, K. H. (1997). Evaluating the number of rehandles in container yards. Computer and Industrial Engineering, 32(4), 701–711.CrossRefGoogle Scholar
  35. Kim, K. H., & Bae, J. W. (1998). Re-marshalling export containers in port container terminals. Computer and Industrial Engineering, 35(3/4), 655–658.CrossRefGoogle Scholar
  36. Kim, K. H., & Hong, G.-P. (2006). A heuristic rule for relocating blocks. Computers and Operations Research, 33(4), 940–954.CrossRefGoogle Scholar
  37. Kim, K. H., & Kim, H. B. (1999a). Segregating space allocation models for container inventories in port container terminals. International Journal of Production Economics, 59(1–3), 415–423.Google Scholar
  38. Kim, K. H., & Kim, K. Y. (1999b). An optimal routing algorithm for a transfer crane in port container terminals. Transportation Science, 33(1), 17–33.CrossRefGoogle Scholar
  39. Kim, K. H., Park, Y. M., & Ryu, K. R. (2000). Deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 124(1), 89–100.CrossRefGoogle Scholar
  40. Kim, K. H., Wang, S. J., Park, Y.-M., Yang, C.-H., & Bae, J. W. (2002). A simulation study on operation rules for automated container yards. In Proceedings of the 7th annual international conference on industrial engineering, Busan (pp. 250–253).Google Scholar
  41. Kim, K. H., Kang, J. S., & Ryu, K. R. (2004). A beam search algorithm for the load sequencing of outbound containers in port container terminals. In H.-O. Günther & K. H. Kim (Eds.), Container terminals and automated transport systems (pp. 183–206). Berlin: Springer.Google Scholar
  42. Kim, K. Y., & Kim, K. H. (1997). A routing algorithm for a single transfer crane to load export containers onto a containership. Computer and Industrial Engineering, 33(3/4), 673–676.CrossRefGoogle Scholar
  43. Kim, K. Y., & Kim, K. H. (2003). Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals. Naval Research Logistics, 50(5), 498–514.CrossRefGoogle Scholar
  44. Kozan, E., & Preston, P. (1999). Genetic algorithms to schedule container transfers at multi-modal terminals. International Transactions in Operational Research, 6(3), 311–329.CrossRefGoogle Scholar
  45. Lee, D.-H., Meng, Q., & Cao, Z. (2006). Scheduling of multiple-yard crane system with container loading sequence consideration. In TRB 85th annual meeting compendium of papers CD-ROM (pp. 1–16).Google Scholar
  46. Lee, D.-H., Cao, Z., & Meng, Q. (2007). Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm. International Journal of Production Economics, 107(1), 115–124.CrossRefGoogle Scholar
  47. Lee, L. H., Chew, E. P. Tan, K. C., & Han, Y. (2006). An optimization model for storage yard management in transshipment hubs. OR Spectrum, 28(4), 539–561.CrossRefGoogle Scholar
  48. Lee, Y., & Hsu, N.-Y. (2007). An optimization model for the container pre-marshalling problem. Computers and Operations Research, 34(11), 3295–3313.CrossRefGoogle Scholar
  49. Li, W., Wu, Y., Petering, M. E. H., Goh, M., & de Souza, R. (2009). Discrete time model and algorithms for container yard crane scheduling. European Journal of Operational Research, 198(1), 165–172.CrossRefGoogle Scholar
  50. Linn, R. J., & Zhang, C.-Q. (2003). A heuristic for dynamic yard crane deployment in a container terminal. IIE Transactions, 35(2), 161–174.CrossRefGoogle Scholar
  51. Meersmans, P. J. M. (2002). Optimization of container handling systems. Ph.D. Thesis, Tinbergen Institute, Rotterdam.Google Scholar
  52. Mühlenbein, H. (1997). Genetic algorithms. In E. H. L. Aarts & J. K. Lenstra (Eds.), Local search in combinatorial optimization (pp. 137–171). Princeton, NJ: Princeton University Press.Google Scholar
  53. Mühlenbein, H., & Schlierkamp-Voosen, D. (1995). Analysis of selection, mutation and recombination in genetic algorithms. In W. Banzhaf & F. Eeckman (Eds.), Evolution and biocomputation, Vol. 899 of Lecture notes in computer science (pp. 142–168). Berlin: Springer.CrossRefGoogle Scholar
  54. Murty, K. G., Liu, J., Wan, Y.-W., & Linn, R. (2005). a decision support system for operations in a container terminal. Decision Support Systems, 39(3), 309–332.Google Scholar
  55. Narasimhan, A., & Palekar, U. S. (2002). Analysis and algorithms for the transtainer routing problem in container port operations. Transportation Science, 36(1), 63–78.CrossRefGoogle Scholar
  56. Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.CrossRefGoogle Scholar
  57. Ng, W. C., & Mak, K. L. (2005a). An effective heuristic for scheduling a yard crane to handle jobs with different ready times. Engineering Optimization, 37(8), 867–877.CrossRefGoogle Scholar
  58. Ng, W. C., & Mak, K. L. (2005b). Yard crane scheduling in port container terminals. Applied Mathematical Modelling, 29(3), 263–276.CrossRefGoogle Scholar
  59. Park, B., Choi, H., Kwon, H., & Kang, M. (2006). Simulation analysis on effective operation of handling equipments in automated container terminal. In A. Sattar & B.-H. Kang (Eds.), AI 2006: Advances in artificial intelligence, Vol. 4304 of Lecture notes in computer science (pp. 1231–1238). Berlin: Springer.CrossRefGoogle Scholar
  60. Park, T., Choe, R., Ok, S., & Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum, 32(3), 593–615.CrossRefGoogle Scholar
  61. Park, T., Choe, R., Kim, Y. H., & Ryu, K. R. (2011). Dynamic adjustment of container stacking policy in an automated container terminal. International Journal of Production Economics, 133(1), 385–392.CrossRefGoogle Scholar
  62. Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.CrossRefGoogle Scholar
  63. Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.Google Scholar
  64. Saanen, Y. A., & Dekker, R. (2006a). Intelligent stacking as way out of congested yards? Part1. Port Technology International, 31 (pp. 87–92).Google Scholar
  65. Saanen, Y. A., & Dekker, R. (2006b). Intelligent stacking as way out of congested yards? Part2. Port Technology International, 32 (pp. 80–86).Google Scholar
  66. Saanen, Y. A., van Meel, J., & Verbraeck, A. (2003). The design and assessement of next generation automated container terminals. In A. Verbraeck & V. Hlupic (Eds.), Proceedings 15th European simulation symposium, Delft (pp. 1–8).Google Scholar
  67. Sniedovich, M., & Voß, S. (2006). The corridor method: a dynamic programming inspired metaheuristic. Control and Cybernetics, 35(2), 551–578.Google Scholar
  68. Speer, U., John, G., & Fischer, K. (2011). Scheduling yard cranes considering crane interference. In J. Böse, H. Hu, C. Jahn, X. Shi, R. Stahlbock, & S. Voß (Eds.), Computational logistics, Vol. 6971 of Lecture notes in computer science (pp. 321–340). Berlin: Springer.CrossRefGoogle Scholar
  69. Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.CrossRefGoogle Scholar
  70. Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research - a classification and literature review. OR Spectrum, 26(1), 3–49.CrossRefGoogle Scholar
  71. Taleb-Ibrahimi, M., de Castilho, B., & Daganzo, C. F. (1993). Storage space vs handling work in container terminals. Transportation Research Part B: Methodological, 27(1), 13–32.CrossRefGoogle Scholar
  72. Urlings, T., Ruiz, R., & Serifoglu, F. S. (2010). Genetic algorithms with different representation schemes for complex hybrid flexible flow line problems. International Journal Metaheuristics, 1(1), 30–54.CrossRefGoogle Scholar
  73. Valkengoed, M. P. J. v. (2004). How passing cranes influence stack operations in a container terminal: a simulation study. Diploma Thesis, University of Amsterdam.Google Scholar
  74. Vis, I. F. A., & Carlo, H. J. (2010). Sequencing two cooperating automated stacking cranes in a container terminal. Transportation Science, 44(2), 169–182.CrossRefGoogle Scholar
  75. Vis, I. F. A., & Roodbergen, K. J. (2009). Scheduling of container storage and retrieval. Operations Research, 57(2), 456–467.CrossRefGoogle Scholar
  76. Voß, S. (2001). Meta-heuristics: The state of the art. In A. Nareyek (Ed.), Local search for planning and scheduling, Vol. 2148 of Lecture notes in computer science (pp. 1–23). Berlin: Springer.CrossRefGoogle Scholar
  77. Zhang, C., Wan, Y.-W., Liu, J., & Linn, R. J. (2002). Dynamic crane deployment in container storage yards. Transportation Research Part B: Methodological, 36(6), 537–555.CrossRefGoogle Scholar
  78. Zhang, C., Chen, W., Shi, L., & Zheng, L. (2010). A note on deriving decision rules to locate export containers in container yards. European Journal of Operational Research, 205(2), 483–485.CrossRefGoogle Scholar
  79. Zyngiridis, I. (2005). Optimizing Container Movements Using one and two Automated Stacking Cranes. Master Thesis, Naval Postgraduate School Monterry, Monterey, CA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Kemme
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations