Advertisement

RMGC-Design-Planning Problem

  • Nils Kemme
Chapter
Part of the Contributions to Management Science book series (MANAGEMENT SC.)

Abstract

The design of automated RMGC systems plays a major role for the competitiveness of the container-storage yards and seaport container terminals as a whole. In this chapter, the strategical design-planning of automated RMGC systems is addressed in detail. It is started with a description of that planning problem, including a classification of decisions to be made, a discussion on objectives to be aimed at and an overview on parameters to be considered. Thereafter, an extensive review of the literature relevant to the problem of designing container-storage yards at seaport container terminals is provided. In particular, it is focused on the research approach used and the most important findings of the papers discussed. Based on the findings of the literature review, different types of general research approaches are introduced and discussed with respect to their applicability for the RMGC-design-planning problem.

Keywords

Operational Performance Filling Rate Container Terminal Shipping Line Retrieval Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ballestero, E., & Romero, C. (1998). Multiple criteria decision making and its applications to economic problems. Dordrecht: Kluwer.CrossRefGoogle Scholar
  2. Böse, J. W. (2011). General considerations on container terminal planning. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/ computer science interfaces series (pp. 3–22). Berlin: Springer.CrossRefGoogle Scholar
  3. Brandt, A., & Jung, H.-U. (2007). Strategische Ansätze für ein regionales standortmanagement Jade-Weser-Raum. Report, Norddeutsche Landesbank and Niedersächsisches Institut für Wirtschaftsforschung.Google Scholar
  4. Chu, C.-Y., & Huang, W.-C. (2005). Determining container terminal capacity on the basis of an adopted yard handling system. Transport Reviews, 25(2), 181–199.CrossRefGoogle Scholar
  5. Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: a survey. Annual Reviews in Control, 31(2), 255–267.CrossRefGoogle Scholar
  6. Duinkerken, M., Dekker, R., Kurstjens, S., Ottjes, J., & Dellaert, N. (2006). Comparing transportation systems for inter-terminal transport at the maasvlakte container terminals. OR Spectrum, 28(4), 469–493.CrossRefGoogle Scholar
  7. Duinkerken, M. B., & Ottjes, J. A. (2000). A simulation model for automated container terminals. In Proceedings of advanced simulation technology conference, Washington, D.C.Google Scholar
  8. Duinkerken, M. B., Evers, J. J. M., & Ottjes, J. A. (2001). A simulation model for integrating quay transport and stacking policies on automated container terminals. In Proceedings of the 15th european simulation multiconference, Prague (pp. 909–916).Google Scholar
  9. Homburg, C. (2007). Betriebswirtschaftslehre als empirische Wissenschaft – Bestandsaufnahme und Empfehlungen. Zeitschrift für betriebswirtschaftliche Forschung, 56(7), 27–60.Google Scholar
  10. Kim, K. H., & Kim, B. H. (1998). The optimal determination of the space requirement and the number of transfer cranes for import containers. Computer and Industrial Engineering, 35(3/4), 427–430.CrossRefGoogle Scholar
  11. Kim, K. H., Park, Y. M., & Jin, M.-J. (2008). An optimal layout of container yards. OR Spectrum, 30(4), 675–695.CrossRefGoogle Scholar
  12. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis (3rd ed.). Boston, MA: McGraw Hill.Google Scholar
  13. Lee, B. K., & Kim, K. H. (2010). Optimizing the block size in container yards. Transportation Research Part E: Logistics and Transportation Review, 46(1), 120–135.CrossRefGoogle Scholar
  14. Liu, C.-I., Jula, H., & Ioannou, P. A. (2002). Design, simulation and evaluation of automated container terminals. IEEE Transactions on Intelligent Transportation Systems, 3(1), 12–26.CrossRefGoogle Scholar
  15. Liu, C.-I., Jula, H., Vukadinovic, K., & Ioannou, P. (2004). Automated guided vehicle system for two container yard layouts. Transportation Research Part C: Emerging Technologies, 12(5), 349–368.CrossRefGoogle Scholar
  16. Nam, K.-C., & Ha, W.-I. (2001). Evaluation of handling systems for container terminals. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(3), 171–175.CrossRefGoogle Scholar
  17. Ottjes, J. A., Veeke, H. P. M., & Duinkerken, M. B. (2002). Simulation studies of robotized multi terminal systems. In Proceedings of the international congress on freight transport automation and multimodality, Delft (pp. 1–24).Google Scholar
  18. Ottjes, J. A., Veeke, H. P. M., Duinkerken, M. B., Rijsenbrij, J. C., & Lodewijks, G. (2007). Simulation of a multiterminal system for container handling. In K. H. Kim & H.-O. Günther (Eds.), Container terminals and cargo systems (pp. 15–36). Berlin: Springer.CrossRefGoogle Scholar
  19. Petering, M. E. H. (2009). Effect of block width and storage yard layout on marine container terminal performance. Transportation Research Part E: Logistics and Transportation Review, 45(4), 591–610.CrossRefGoogle Scholar
  20. Petering, M. E. H., & Murty, K. G. (2009). Effect of block length and yard crane deployment systems on overall performance at a seaport container transshipment terminal. Computers & Operations Research, 36(5), 1711–1725.CrossRefGoogle Scholar
  21. Pirhonen, J. (2011). Automated shuttle carrier concept. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 41–59). Berlin: Springer.CrossRefGoogle Scholar
  22. PNC (1999). The Enforcement Plan for Pusan New Port. Final Report, Pusan New Port Company Ltd.Google Scholar
  23. Ranau, M. (2011). Planning approach for dimensioning of automated traffic areas at seaport container terminals. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 179–193). Berlin: Springer.CrossRefGoogle Scholar
  24. Saanen, Y. A. (2006). High density terminals: RTG or RMG? In Proceedings of TOC Americas 2006, Acapulco (pp. 1–21).Google Scholar
  25. Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.Google Scholar
  26. Saanen, Y. A. (2011). Modeling techniques in planning of terminals: the quantitative approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 83–102). Berlin: Springer.CrossRefGoogle Scholar
  27. Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking alternatives by means of simulation. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 winter simulation conference, Orlando, FL (pp. 1567–1576).CrossRefGoogle Scholar
  28. Saanen, Y. A., van Meel, J., & Verbraeck, A. (2003). The design and assessement of next generation automated container terminals. In A. Verbraeck & V. Hlupic (Eds.), Proceedings 15th European simulation symposium, Delft (pp. 1–8).Google Scholar
  29. Schmidt, J. W., & Taylor, R. E. (1970). Simulation analysis of industrial systems (3rd ed.). Burr Ridge, IL: Richard D. Irwin.Google Scholar
  30. Singh, S., & Sharma, R. (2006). A review of different approaches to the facility layout problems. The International Journal of Advanced Manufacturing Technology, 30(5/6), 425–433.CrossRefGoogle Scholar
  31. Valkengoed, M. P. J. v. (2004). How passing cranes influence stack operations in a container terminal: a simulation study. Diploma Thesis, University of Amsterdam.Google Scholar
  32. Vis, I. F. A. (2006a). A comparative analysis of storage and retrieval equipment at a container terminal. International Journal of Production Economics, 103(2), 680–693.CrossRefGoogle Scholar
  33. Vis, I. F. A., & Harika, I. (2004). Comparison of vehicle types at an automated container terminal. OR Spectrum, 26(1), 117–143.CrossRefGoogle Scholar
  34. Vis, I. F. A., de Koster, R., Roodbergen, K. J., & Peeters, L. W. P. (2001). Determination of the number of automated guided vehicles required at a semi-automated container terminal. The Journal of the Operational Research Society, 52(4), 409–417.CrossRefGoogle Scholar
  35. Wiese, J., Suhl, L., & Kliewer, N. (2009b). Mathematical programming and simulation based layout planning of container terminals. International Journal of Simulation and Process Modelling, 5(4), 313–323.CrossRefGoogle Scholar
  36. Wiese, J., Suhl, L., & Kliewer, N. (2010). Mathematical models and solution methods for optimal container terminal yard layouts. OR Spectrum, 32(3), 427–452.CrossRefGoogle Scholar
  37. Wiese, J., Suhl, L., & Kliewer, N. (2011). Planning container terminal layouts considering equipment types and storage block design. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 219–245). Berlin: Springer.CrossRefGoogle Scholar
  38. Winston, W. L. (2004). Operations research – applications and algorithms (4th ed.). Belmont, CA: Thomson Learning.Google Scholar
  39. Yang, C. H., Choi, Y. S., & Ha, T. Y. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum, 26(2), 149–170.CrossRefGoogle Scholar
  40. Zyngiridis, I. (2005). Optimizing Container Movements Using one and two Automated Stacking Cranes. Master Thesis, Naval Postgraduate School Monterry, Monterey, CA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Kemme
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations