Container-Storage Yard

  • Nils Kemme
Part of the Contributions to Management Science book series (MANAGEMENT SC.)


The container-storage yard is of particular importance for seaport container terminals, since it is the terminal’s central part from both the geographical and the processual point of view. Most of the terminal operations either originate from or cease at the container-storage yard, such that most terminal operations are directly or indirectly affected by the storage-yard operations. Therefore, the operational performance of seaport container terminals as a whole is to a large extent determined by the operations of the container-storage yard. In this chapter, the container-storage yard is firstly characterised and thereafter its performance measures and their importance for the performance of seaport container terminals as a whole are discussed. Then, different types of storage-yard systems are compared and—to motivate the further investigation—the automated RMGC system is found to be of great relevance for the performance of modern container terminals. As a consequence, this comparison is followed by a detailed description of the RMGC system and its variants.


Storage Unit Container Terminal Shipping Line Retrieval Operation Gantry Crane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container ship stowage problem. Journal of Heuristics, 12(3), 211–233.CrossRefGoogle Scholar
  2. Atkins, W. H. (1983). Modern marine terminal operations and management. Oakland, CA: Port of Oakland.Google Scholar
  3. Bellmore, M., & Hong, S. (1974). Transformation of multisalesmen problem to the standard traveling salesman problem. Journal of the Association of Computing Machinery, 21(3), 500–504.CrossRefGoogle Scholar
  4. Bohrer, P. (2010). Crane scheduling in container terminals: mathematical models, heuristics and algorithms. Saarbrücken: VDM Verlag Dr. Müller.Google Scholar
  5. Bozer, A. Y., & White, J. A. (1990). Design and performance models for end-of-aisle order picking systems. Management Science, 36(7), 852–866.CrossRefGoogle Scholar
  6. Brinkmann, B. (2011). Operations systems of container terminals: a compendious overview. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 25–39). Berlin: Springer.CrossRefGoogle Scholar
  7. Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.CrossRefGoogle Scholar
  8. Carlo, H. J., & Vis, I. F. A. (2008). Routing new types of stacking crane configurations at container terminals. In K. Ellis, R. Meller, M. K. Ogle, B. A. Peter, G. D. Taylor, & J. S. Usher (Eds.), Progress in material handling reserach (pp. 55–70). Charlotte: Material Handling Institute.Google Scholar
  9. Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271–292.CrossRefGoogle Scholar
  10. Chu, C.-Y., & Huang, W.-C. (2005). Determining container terminal capacity on the basis of an adopted yard handling system. Transport Reviews, 25(2), 181–199.CrossRefGoogle Scholar
  11. Copeland, T. E., Weston, J. F., & Shastri, K. (2003). Financial theory and corporate policy (4th ed.). Amsterdam: Addison-Wesley Longman.Google Scholar
  12. Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.CrossRefGoogle Scholar
  13. Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectrum, 32(3), 617–632.CrossRefGoogle Scholar
  14. Eben-Chaime, M. (1992). Operations sequencing in automated warehousing systems. International Journal of Production Research, 30(10), 2401–2409.CrossRefGoogle Scholar
  15. Edmonson, R. G. (2007). Calling a new tune. The Journal of Commerce, 8(37), 1–5.Google Scholar
  16. Goussiatiner, A. (2009). Systematic approach to quayside container crane productivity improvement. Container Management, 2009(2, 3), 54–57, 42–45.Google Scholar
  17. Gutin, G., & Punnen, A. P. (Eds.) (2002). The traveling salesman problem and its variations. Berlin: Springer.Google Scholar
  18. HHLA (2009). Geschäftsbericht 2008. Hamburg: Hamburger Hafen und Logistik AG.Google Scholar
  19. Kalmar (2011a). Kalmar Container Handling Systems – Complete Range of Products and Knowhow., Accessed 09 September 2011.
  20. Koch, T. (2004). Automatik-portalkrane im CTA-containerlager. Hebezeuge und Fördermittel, 44(11), 632–636.Google Scholar
  21. Konecranes (2011). Rail Mounted Gantry Crane with Active Load Control system.\_lowres.pdf, Accessed 09 September 2011.
  22. Krieger, W. (2005b). Lager. In Gabler Wirtschaftslexikon (16th ed.). (pp. 1847). Wiesbaden: Gabler. Author Information in
  23. Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (Eds.) (1985). The traveling salesman problem – a guided tour of combinatorial optimization. New York: Wiley.Google Scholar
  24. MacCarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59–79.CrossRefGoogle Scholar
  25. Nazari, D. (2005). Evaluating Container Yard Layout – A Simulation Approach. Master Thesis, Erasmus University Rotterdam.Google Scholar
  26. Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.CrossRefGoogle Scholar
  27. Park, T., Choe, R., Ok, S., & Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum, 32(3), 593–615.CrossRefGoogle Scholar
  28. Petering, M. E. H., & Murty, K. G. (2009). Effect of block length and yard crane deployment systems on overall performance at a seaport container transshipment terminal. Computers & Operations Research, 36(5), 1711–1725.CrossRefGoogle Scholar
  29. Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.CrossRefGoogle Scholar
  30. Pirhonen, J. (2011). Automated shuttle carrier concept. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 41–59). Berlin: Springer.CrossRefGoogle Scholar
  31. Randhawa, S. U., McDowell, E. D., & Wang, W. T. (1991). Evaluation of scheduling rules for single- and dual-dock automated storage/retrieval systems. Computer and Industrial Engineering, 28(1), 71–79.CrossRefGoogle Scholar
  32. Rijsenbrij, J. C., & Wieschemann, A. (2011). Sustainable container terminals: a design approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Volume 49 of Operations research/computer science interfaces series (pp. 61–82). Berlin: Springer.CrossRefGoogle Scholar
  33. Rouwenhorst, B., Reuter, B., Stockrahm, V., Van Houtm, G. J., Mantel, R. J., & Zijm, W. H. M. (2000). Warehouse design and control: framework and literature overview. European Journal of Operational Research, 122(3), 515–533.CrossRefGoogle Scholar
  34. Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.Google Scholar
  35. Saanen, Y. A. (2006). High density terminals: RTG or RMG? In Proceedings of TOC Americas 2006, Acapulco (pp. 1–21).Google Scholar
  36. Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.Google Scholar
  37. Saanen, Y. A. (2008). Automated container handling. Freight international., Accessed 09 September 2011.
  38. Saanen, Y. A., & Rijsenbrij, J. (2007). Which system fits your Hub? Cargo Systems, 2007(6), 47–51.Google Scholar
  39. Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking alternatives by means of simulation. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 winter simulation conference, Orlando, FL (pp. 1567–1576).CrossRefGoogle Scholar
  40. Sarker, B. R., & Babu, P. S. (1995). Travel time models in automated storage/retrieval systems: a critical review. International Journal of Production Economics, 40(2/3), 173–184.CrossRefGoogle Scholar
  41. Schneider, M. (2008). Lager- und Materialflussprozesse. In D. Arnold, H. Isermann, A. Kuhn, H. Tempelmeier, & K. Fuhrmans (Eds.), Handbuch Logistik (pp. 371–404). Berlin: Springer.Google Scholar
  42. Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1–52.CrossRefGoogle Scholar
  43. Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.CrossRefGoogle Scholar
  44. Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research - a classification and literature review. OR Spectrum, 26(1), 3–49.CrossRefGoogle Scholar
  45. Toth, P., & Vigo, D. (Eds.) (2002). The vehicle routing problem. Philadelphia, PA: SIAM.Google Scholar
  46. UNCTAD (1985). Port development – a handbook for planners in developing countries. New York: United Nations Conference on Trade and Development.Google Scholar
  47. VDI (Ed.) (2005). Basic organisational functions in warehousing — VDI 3629. Düsseldorf: VDI.Google Scholar
  48. Vis, I. F. A. (2002). Planning and control concepts for material handling systems. Ph.D. Thesis, Erasmus University of Rotterdam.Google Scholar
  49. Wiese, J., Kliewer, N., & Suhl, L. (2009a). A Survey of Container Terminal Characteristics and Equipment Types. Working Paper 0901, Decision Support & Operations Research Lab, University of Paderborn.Google Scholar
  50. Zijderveld, E. J. A. v. (1995). A structured terminal design method, with a focus on rail terminals. Ph.D. Thesis, Faculty of Mechanical Engineering, Delft University of Technology.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Kemme
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations