Skip to main content

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

Abstract

The container-storage yard is of particular importance for seaport container terminals, since it is the terminal’s central part from both the geographical and the processual point of view. Most of the terminal operations either originate from or cease at the container-storage yard, such that most terminal operations are directly or indirectly affected by the storage-yard operations. Therefore, the operational performance of seaport container terminals as a whole is to a large extent determined by the operations of the container-storage yard. In this chapter, the container-storage yard is firstly characterised and thereafter its performance measures and their importance for the performance of seaport container terminals as a whole are discussed. Then, different types of storage-yard systems are compared and—to motivate the further investigation—the automated RMGC system is found to be of great relevance for the performance of modern container terminals. As a consequence, this comparison is followed by a detailed description of the RMGC system and its variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container ship stowage problem. Journal of Heuristics, 12(3), 211–233.

    Article  Google Scholar 

  • Atkins, W. H. (1983). Modern marine terminal operations and management. Oakland, CA: Port of Oakland.

    Google Scholar 

  • Bellmore, M., & Hong, S. (1974). Transformation of multisalesmen problem to the standard traveling salesman problem. Journal of the Association of Computing Machinery, 21(3), 500–504.

    Article  Google Scholar 

  • Bohrer, P. (2010). Crane scheduling in container terminals: mathematical models, heuristics and algorithms. Saarbrücken: VDM Verlag Dr. Müller.

    Google Scholar 

  • Bozer, A. Y., & White, J. A. (1990). Design and performance models for end-of-aisle order picking systems. Management Science, 36(7), 852–866.

    Article  Google Scholar 

  • Brinkmann, B. (2011). Operations systems of container terminals: a compendious overview. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 25–39). Berlin: Springer.

    Chapter  Google Scholar 

  • Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.

    Article  Google Scholar 

  • Carlo, H. J., & Vis, I. F. A. (2008). Routing new types of stacking crane configurations at container terminals. In K. Ellis, R. Meller, M. K. Ogle, B. A. Peter, G. D. Taylor, & J. S. Usher (Eds.), Progress in material handling reserach (pp. 55–70). Charlotte: Material Handling Institute.

    Google Scholar 

  • Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271–292.

    Article  Google Scholar 

  • Chu, C.-Y., & Huang, W.-C. (2005). Determining container terminal capacity on the basis of an adopted yard handling system. Transport Reviews, 25(2), 181–199.

    Article  Google Scholar 

  • Copeland, T. E., Weston, J. F., & Shastri, K. (2003). Financial theory and corporate policy (4th ed.). Amsterdam: Addison-Wesley Longman.

    Google Scholar 

  • Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.

    Article  Google Scholar 

  • Dorndorf, U., & Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectrum, 32(3), 617–632.

    Article  Google Scholar 

  • Eben-Chaime, M. (1992). Operations sequencing in automated warehousing systems. International Journal of Production Research, 30(10), 2401–2409.

    Article  Google Scholar 

  • Edmonson, R. G. (2007). Calling a new tune. The Journal of Commerce, 8(37), 1–5.

    Google Scholar 

  • Goussiatiner, A. (2009). Systematic approach to quayside container crane productivity improvement. Container Management, 2009(2, 3), 54–57, 42–45.

    Google Scholar 

  • Gutin, G., & Punnen, A. P. (Eds.) (2002). The traveling salesman problem and its variations. Berlin: Springer.

    Google Scholar 

  • HHLA (2009). Geschäftsbericht 2008. Hamburg: Hamburger Hafen und Logistik AG.

    Google Scholar 

  • Kalmar (2011a). Kalmar Container Handling Systems – Complete Range of Products and Knowhow. http://www.rrtobe.com, Accessed 09 September 2011.

  • Koch, T. (2004). Automatik-portalkrane im CTA-containerlager. Hebezeuge und Fördermittel, 44(11), 632–636.

    Google Scholar 

  • Konecranes (2011). Rail Mounted Gantry Crane with Active Load Control system. http://www.konecranes.com/attachments/brochures/rmg\_lowres.pdf, Accessed 09 September 2011.

  • Krieger, W. (2005b). Lager. In Gabler Wirtschaftslexikon (16th ed.). (pp. 1847). Wiesbaden: Gabler. Author Information in http://wirtschaftslexikon.gabler.de.

  • Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (Eds.) (1985). The traveling salesman problem – a guided tour of combinatorial optimization. New York: Wiley.

    Google Scholar 

  • MacCarthy, B. L., & Liu, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59–79.

    Article  Google Scholar 

  • Nazari, D. (2005). Evaluating Container Yard Layout – A Simulation Approach. Master Thesis, Erasmus University Rotterdam.

    Google Scholar 

  • Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.

    Article  Google Scholar 

  • Park, T., Choe, R., Ok, S., & Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum, 32(3), 593–615.

    Article  Google Scholar 

  • Petering, M. E. H., & Murty, K. G. (2009). Effect of block length and yard crane deployment systems on overall performance at a seaport container transshipment terminal. Computers & Operations Research, 36(5), 1711–1725.

    Article  Google Scholar 

  • Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.

    Article  Google Scholar 

  • Pirhonen, J. (2011). Automated shuttle carrier concept. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 41–59). Berlin: Springer.

    Chapter  Google Scholar 

  • Randhawa, S. U., McDowell, E. D., & Wang, W. T. (1991). Evaluation of scheduling rules for single- and dual-dock automated storage/retrieval systems. Computer and Industrial Engineering, 28(1), 71–79.

    Article  Google Scholar 

  • Rijsenbrij, J. C., & Wieschemann, A. (2011). Sustainable container terminals: a design approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Volume 49 of Operations research/computer science interfaces series (pp. 61–82). Berlin: Springer.

    Chapter  Google Scholar 

  • Rouwenhorst, B., Reuter, B., Stockrahm, V., Van Houtm, G. J., Mantel, R. J., & Zijm, W. H. M. (2000). Warehouse design and control: framework and literature overview. European Journal of Operational Research, 122(3), 515–533.

    Article  Google Scholar 

  • Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.

    Google Scholar 

  • Saanen, Y. A. (2006). High density terminals: RTG or RMG? In Proceedings of TOC Americas 2006, Acapulco (pp. 1–21).

    Google Scholar 

  • Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.

    Google Scholar 

  • Saanen, Y. A. (2008). Automated container handling. Freight international. http://www.freight-int.com/categories/automated-container-handling/automated-container-handling.asp, Accessed 09 September 2011.

  • Saanen, Y. A., & Rijsenbrij, J. (2007). Which system fits your Hub? Cargo Systems, 2007(6), 47–51.

    Google Scholar 

  • Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking alternatives by means of simulation. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 winter simulation conference, Orlando, FL (pp. 1567–1576).

    Chapter  Google Scholar 

  • Sarker, B. R., & Babu, P. S. (1995). Travel time models in automated storage/retrieval systems: a critical review. International Journal of Production Economics, 40(2/3), 173–184.

    Article  Google Scholar 

  • Schneider, M. (2008). Lager- und Materialflussprozesse. In D. Arnold, H. Isermann, A. Kuhn, H. Tempelmeier, & K. Fuhrmans (Eds.), Handbuch Logistik (pp. 371–404). Berlin: Springer.

    Google Scholar 

  • Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1–52.

    Article  Google Scholar 

  • Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.

    Article  Google Scholar 

  • Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research - a classification and literature review. OR Spectrum, 26(1), 3–49.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (Eds.) (2002). The vehicle routing problem. Philadelphia, PA: SIAM.

    Google Scholar 

  • UNCTAD (1985). Port development – a handbook for planners in developing countries. New York: United Nations Conference on Trade and Development.

    Google Scholar 

  • VDI (Ed.) (2005). Basic organisational functions in warehousing — VDI 3629. Düsseldorf: VDI.

    Google Scholar 

  • Vis, I. F. A. (2002). Planning and control concepts for material handling systems. Ph.D. Thesis, Erasmus University of Rotterdam.

    Google Scholar 

  • Wiese, J., Kliewer, N., & Suhl, L. (2009a). A Survey of Container Terminal Characteristics and Equipment Types. Working Paper 0901, Decision Support & Operations Research Lab, University of Paderborn.

    Google Scholar 

  • Zijderveld, E. J. A. v. (1995). A structured terminal design method, with a focus on rail terminals. Ph.D. Thesis, Faculty of Mechanical Engineering, Delft University of Technology.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kemme, N. (2013). Container-Storage Yard. In: Design and Operation of Automated Container Storage Systems. Contributions to Management Science. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2885-6_3

Download citation

Publish with us

Policies and ethics