Container-Terminal Logistics

  • Nils Kemme
Part of the Contributions to Management Science book series (MANAGEMENT SC.)


As the actual decoupling point between maritime and inland transport, seaport container terminals play an essential role in the international container transport network, which is at the same time one of the greatest drivers and one of the greatest profiteers of the globalisation. In this chapter, the basic terms, facts and problems of seaport container terminals are introduced in order to prepare the ground for all following analyses. After a brief introduction of the container logistics sector as a whole, functions, operations and equipment types of container terminals are described, which is followed by definitions of several design and performance indicators for container terminals. Finally, a comprehensive overview on all kinds of planning problems arising at seaport container terminals is provided.


Container Terminal Quay Crane Empty Container Shipping Line Storage Subsystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez, J. F. (2006). A heuristic for vessel planning in a reach stacker terminal. Journal of Maritime Research, 3(1), 3–16.Google Scholar
  2. Ambrosino, D., Sciomachen, A., & Tanfani, E. (2006). A decomposition heuristics for the container ship stowage problem. Journal of Heuristics, 12(3), 211–233.CrossRefGoogle Scholar
  3. Ascheuer, N., Grötschel, M., Kamin, N., & Rambau, J. (1998). Combinatorial online optimization in practice. OPTIMA, 57, 1–6.Google Scholar
  4. Biebig, P., Althof, W., & Wagner, N. (2008). Seeverkehrswirtschaft (4th ed.). Munich: Oldenburg Verlag.Google Scholar
  5. Böse, J. W. (2011). General considerations on container terminal planning. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/ computer science interfaces series (pp. 3–22). Berlin: Springer.CrossRefGoogle Scholar
  6. Böse, J. W., Reiners, T., Steenken, D., & Voß, S. (2000). Vehicle dispatching at seaport container terminals using evolutionary algorithms. In Proceedings of the 33rd Hawaii international conference on system sciences (pp. 1–10).Google Scholar
  7. Boysen, N., & Fliedner, M. (2010). Determining crane areas in intermodal transshipment yards: the yard partition problem. European Journal of Operational Research, 204(2), 336–342.CrossRefGoogle Scholar
  8. Brinkmann, B. (2011). Operations systems of container terminals: a compendious overview. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 25–39). Berlin: Springer.CrossRefGoogle Scholar
  9. Briskorn, D., Drexl, A., & Hartmann, S. (2006). Inventory-based dispatching of automated guided vehicles on container terminals. OR Spectrum, 28(4), 611–630.CrossRefGoogle Scholar
  10. Bruns, R., Günthner, W., Hompel, M., Kessler, F., Krause, F., Kunze, G., Marquardt, H., Poppy, W., Scholten, J., Severin, D., & Wagner, G. (2007). Fördertechnik. In K.-H. Grote & J. Feldhusen (Eds.), Dubbel (pp. U1–U113). Berlin: Springer.CrossRefGoogle Scholar
  11. Caserta, M., Schwarze, S., & Voß, S. (2011). Container rehandling at maritime container terminals. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 247–269). Berlin: Springer.CrossRefGoogle Scholar
  12. Copeland, T. E., Weston, J. F., & Shastri, K. (2003). Financial theory and corporate policy (4th ed.). Amsterdam: Addison-Wesley Longman.Google Scholar
  13. Cordeau, J.-F., Laporte, G., Legato, P., & Moccia, L. (2005). Models and tabu search heuristics for the berth-allocation problem. Transportation Science, 39(4), 526–538.CrossRefGoogle Scholar
  14. Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B: Methodological, 23(3), 159–175.CrossRefGoogle Scholar
  15. Dai, J., Lin, W., Moorthy, R., & Teo, C.-P. (2008). Berth allocation planning optimization in container terminals. In C. S. Tang, C.-P. Teo, K.-K. Wei, & F. S. Hillier (Eds.), Supply chain analysis, Vol. 119 of International series in operations research & management science (pp. 69–104). Berlin: Springer.Google Scholar
  16. Das, S. K., & Spasovic, L. (2003). Scheduling material handling vehicles in a container terminal. Production Planning & Control: The Management of Operations, 14(7), 623–633.CrossRefGoogle Scholar
  17. De Castilho, B., & Daganzo, C. F. (1993). Handling strategies for import containers at marine terminals. Transportation Research Part B: Methodological, 27(2), 151–166.CrossRefGoogle Scholar
  18. Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.CrossRefGoogle Scholar
  19. Duinkerken, M., Dekker, R., Kurstjens, S., Ottjes, J., & Dellaert, N. (2006). Comparing transportation systems for inter-terminal transport at the maasvlakte container terminals. OR Spectrum, 28(4), 469–493.CrossRefGoogle Scholar
  20. Duinkerken, M. B., & Ottjes, J. A. (2000). A simulation model for automated container terminals. In Proceedings of advanced simulation technology conference, Washington, D.C.Google Scholar
  21. Egbelu, P. J., & Tanchoco, J. M. A. (1984). Characterization of automated guided vehicle dispatching rules. International Journal of Production Research, 22(3), 359–374.CrossRefGoogle Scholar
  22. Evers, J. J. M., & Koppers, S. A. J. (1996). Automated guided vehicle traffic control at a container terminal. Transportation Research Part A: Policy and Practice, 30(1), 21–34.CrossRefGoogle Scholar
  23. Fiat, A., & Woeginger, A. J. (Eds.) (1998). Online algorithms: the state of the art, Vol. 1442 of Lecture notes in computer science. Berlin: Springer.Google Scholar
  24. Goussiatiner, A. (2009). Systematic approach to quayside container crane productivity improvement. Container Management, 2009(2, 3), 54–57, 42–45.Google Scholar
  25. Grötschel, M., Krumke, S. O., Rambau, J., Winter, T., & Zimmermann, U. (2001). Combinatorial online optimization in real time. In M. Grötschel, S. O. Krumke, & J. Rambau (Eds.), Online optimization of large scale systems (pp. 679–704). Berlin: Springer.CrossRefGoogle Scholar
  26. Grunow, M., Günther, H.-O., & Lehmann, M. (2004a). Dispatching multi-load agvs in highly automated seaport container terminals. OR Spectrum, 26(2), 211–235.CrossRefGoogle Scholar
  27. Grunow, M., Günther, H.-O., & Lehmann, M. (2004b). Online- versus Offline-Einsatzplanung von fahrerlosen Transportsystemen in Containerhäfen. In T. Sprengler, S. Voß, & H. Kopfer (Eds.), Logistikmanagement: Prozesse, Systeme, Ausbildung (pp. 399–410). Berlin: Springer.Google Scholar
  28. Grunow, M., Günther, H.-O., & Lehmann, M. (2006). Strategies for dispatching agvs at automated seaport container terminals. OR Spectrum, 28(4), 587–610.CrossRefGoogle Scholar
  29. Günther, H.-O., & Kim, K. H. (Eds.) (2005). Container terminals and automated transport systems. Berlin: Springer.Google Scholar
  30. Günther, H.-O., & Kim, K. H. (2006). Container terminals and terminal operations. OR Spectrum, 28(4), 437–445.CrossRefGoogle Scholar
  31. Hartmann, S., Pohlmann, J., & Schönknecht, A. (2011). Simulation of container ship arrivals and quay occupation. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 135–154). Berlin: Springer.CrossRefGoogle Scholar
  32. Hecht, H., & Pawlik, T. (2007). Containerseeschifffahrt. Bremen: Hanseatic Lloyd Reederei.Google Scholar
  33. Henesey, L., Davidsson, P., & Persson, J. A. (2004). Using simulation in evaluating berth allocation at a container terminal., Accessed 09 September 2011.
  34. Johansen, R. S. (2006). Container terminal planning: improving system productivity to service larger container vessels. Port Technology International, 31, 104–106.Google Scholar
  35. Kalmar (2011a). Kalmar Container Handling Systems – Complete Range of Products and Knowhow., Accessed 09 September 2011.
  36. Kalmar (2011b). Straddle Carriers., Accessed 09 September 2011.
  37. Kang, J., Ryu, K. R., & Kim, K. H. (2006a). Deriving stacking strategies for export containers with uncertain weight information. Journal of Intelligent Manufacturing, 17(4), 399–410.CrossRefGoogle Scholar
  38. Kang, J., Ryu, K. R., & Kim, K. H. (2006b). Determination of storage locations for incoming containers of uncertain weight. In M. Ali & R. Dapoigny (Eds.), Advances in applied artificial intelligence, Vol. 4031 of Lecture notes in computer science (pp. 1159–1168). Berlin: Springer.CrossRefGoogle Scholar
  39. Kim, K. H., & Park, Y.-M. (2004). A crane scheduling method for port container terminals. European Journal of Operational Research, 156(3), 752–768.CrossRefGoogle Scholar
  40. Kim, K. H., Park, Y. M., & Jin, M.-J. (2008). An optimal layout of container yards. OR Spectrum, 30(4), 675–695.CrossRefGoogle Scholar
  41. Kozan, E., & Preston, P. (1999). Genetic algorithms to schedule container transfers at multi-modal terminals. International Transactions in Operational Research, 6(3), 311–329.CrossRefGoogle Scholar
  42. Krieger, W. (2005a). Container. In Gabler Wirtschaftslexikon (16th ed.). (pp. 617). Wiesbaden: Gabler. Author Information in, Accessed 09 September 2011.
  43. Krieger, W. (2005c). Logistik. In Gabler Wirtschaftslexikon (16th ed.). (pp. 1918). Wiesbaden: Gabler. Author Information in
  44. Lee, D.-H., Wang, H. Q., & Miao, L. (2008). Quay crane scheduling with non-interference constraints in port container terminals. Transportation Research Part E: Logistics and Transportation Review, 44(1), 124–135.CrossRefGoogle Scholar
  45. Meersmans, P. J. M. (2002). Optimization of container handling systems. Ph.D. Thesis, Tinbergen Institute, Rotterdam.Google Scholar
  46. Meersmans, P. J. M., & Dekker, R. (2001). Operations Research Supports Container Handling. Working Paper EI 2001–22, Econmetric Institute, Erasmus University Rotterdam.Google Scholar
  47. Meisel, F., & Bierwirth, C. (2011). A technique to determine the right crane capacity for a continuous quay. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 155–178). Berlin: Springer.CrossRefGoogle Scholar
  48. Mietschnig, W. (2005). Telelader, insbesondere Reachstacker. European Patent: EP 1 586 529 A2.Google Scholar
  49. Min, D., Wang, F., & Zhan, S. (2009). Impact analysis of the global financial crisis on global container fleet. In Proceedings of 6th international conference on services systems and services management (pp. 161–166). Los Alamitos: IEEE Computer Society.Google Scholar
  50. Mizunuma, W., Tsuji, H., & Shinosaki, A. (2005). Efficient container handling by Reachstacker. Mitsubishi Heavy Industries Technical Review, 42(1), 1–2.Google Scholar
  51. Nazari, D. (2005). Evaluating Container Yard Layout – A Simulation Approach. Master Thesis, Erasmus University Rotterdam.Google Scholar
  52. Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.CrossRefGoogle Scholar
  53. Noell (2011). The Sprinter., Accessed 09 September 2011.
  54. Petering, M. E. H., Wu, Y., Li, W., Goh, M., & de Souza, R. (2009). Development and simulation analysis of real-time yard crane control systems for seaport container transshipment terminals. OR Spectrum, 31(4), 801–835.CrossRefGoogle Scholar
  55. Pirhonen, J. (2011). Automated shuttle carrier concept. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 41–59). Berlin: Springer.CrossRefGoogle Scholar
  56. Port of Hamburg (2011b). Jahrespressekonferenz 2011., Accessed 09 September 2011.
  57. Ranau, M. (2011). Planning approach for dimensioning of automated traffic areas at seaport container terminals. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 179–193). Berlin: Springer.CrossRefGoogle Scholar
  58. Rijsenbrij, J. C., & Wieschemann, A. (2011). Sustainable container terminals: a design approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Volume 49 of Operations research/computer science interfaces series (pp. 61–82). Berlin: Springer.CrossRefGoogle Scholar
  59. Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.Google Scholar
  60. Saanen, Y. A. (2006). High density terminals: RTG or RMG? In Proceedings of TOC Americas 2006, Acapulco (pp. 1–21).Google Scholar
  61. Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.Google Scholar
  62. Saanen, Y. A. (2008). Automated container handling. Freight international., Accessed 09 September 2011.
  63. Saanen, Y. A. (2011). Modeling techniques in planning of terminals: the quantitative approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Vol. 49 of Operations research/computer science interfaces series (pp. 83–102). Berlin: Springer.CrossRefGoogle Scholar
  64. Scholtens, M., Wijnolst, N., & Waals, F. (1999). Malacca-max: the ultimate container carrier. Delft, NL: Delft University Press.Google Scholar
  65. Sciomachen, A., & Tanfani, E. (2003). The master bay plan problem: a solution method based on its connection to the three-dimensional Bin Packing Problem. IMA Journal of Management Mathematics, 14(3), 251–269.CrossRefGoogle Scholar
  66. Sciomachen, A., & Tanfani, E. (2007). A 3D-BPP approach for optimising stowage plans and technical productivity. European Journal of Operational Research, 183(3), 1433–1446.CrossRefGoogle Scholar
  67. Shields, J. J. (1984). Containership stowage: a computer aided pre-planning system. Marine Technology, 21(4), 370–383.Google Scholar
  68. Siepermann, M., & Krieger, W. (2005). Just in time (JIT). In Gabler Wirtschaftslexikon (16th ed.). Wiesbaden: Gabler. Author Information in
  69. Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature update. OR Spectrum, 30(1), 1–52.CrossRefGoogle Scholar
  70. Stahlbock, R., & Voß, S. (2010). Efficiency considerations for sequencing and scheduling of double-rail-mounted gantry cranes at maritime container terminals. International Journal of Shipping and Transport Logistics, 2(1), 95–123.CrossRefGoogle Scholar
  71. Steenken, D. (1992). Fahrwegoptimierung am containerterminal unter echtzeitbedingungen. OR Spectrum, 14(3), 161–168.CrossRefGoogle Scholar
  72. Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations research - a classification and literature review. OR Spectrum, 26(1), 3–49.CrossRefGoogle Scholar
  73. Stenzel, B. (2008). Online disjoint vehicle routing with application to AGV routing. Ph.D. Thesis, Faculty of Maths and Natural Sciences, Technical University of Berlin.Google Scholar
  74. UNCTAD (2008). Review of maritime transport 2008. New York: United Nations Conference on Trade and Development.Google Scholar
  75. Vis, I. F. A. (2006b). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677–709.CrossRefGoogle Scholar
  76. Vis, I. F. A., & de Koster, R. (2003). Transshipment of containers at a container terminal. European Journal of Operational Research, 147(1), 1–16.CrossRefGoogle Scholar
  77. Vis, I. F. A., de Koster, R., Roodbergen, K. J., & Peeters, L. W. P. (2001). Determination of the number of automated guided vehicles required at a semi-automated container terminal. The Journal of the Operational Research Society, 52(4), 409–417.CrossRefGoogle Scholar
  78. Wang, F., & Lim, A. (2007). A stochastic beam search for the berth allocation problem. Decision Support Systems, 42(4), 2186–2196.CrossRefGoogle Scholar
  79. Watanabe, I. (2001). Container terminal planning: a theoretical approach. Surrey, GB: World Cargo News Publishing.Google Scholar
  80. Wilson, I. D., & Roach, P. A. (1999). Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics, 5(4), 403–418.CrossRefGoogle Scholar
  81. Wilson, I. D., Roach, P. A., & Ware, J. A. (2001). Container stowage pre-planning: using search to generate solutions: a case study. Knowledge-Based Systems, 14(3/4), 137–145.CrossRefGoogle Scholar
  82. Yang, C. H., Choi, Y. S., & Ha, T. Y. (2004). Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectrum, 26(2), 149–170.CrossRefGoogle Scholar
  83. Zijderveld, E. J. A. v. (1995). A structured terminal design method, with a focus on rail terminals. Ph.D. Thesis, Faculty of Mechanical Engineering, Delft University of Technology.Google Scholar
  84. ZPMC (2009). Twin 40’ quayside container crane., Accessed 17 February 2010.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Kemme
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations