Advertisement

Introduction

  • Nils Kemme
Chapter
Part of the Contributions to Management Science book series (MANAGEMENT SC.)

Abstract

The sea traffic and trade has always been of great importance for both the business success of individual companies as well as the welfare of nations.

Keywords

Solution Approach Container Terminal Quay Crane Gantry Crane Terminal Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Dekker, R., Voogd, P., & van Asperen, E. (2006). Advanced methods for container stacking. OR Spectrum, 28(4), 563–586.CrossRefGoogle Scholar
  2. HHLA (2009). Geschäftsbericht 2008. Hamburg: Hamburger Hafen und Logistik AG.Google Scholar
  3. Park, T., Choe, R., Ok, S., & Ryu, K. R. (2010). Real-time scheduling for twin RMGs in an automated container yard. OR Spectrum, 32(3), 593–615.CrossRefGoogle Scholar
  4. Petering, M. E. H. (2009). Effect of block width and storage yard layout on marine container terminal performance. Transportation Research Part E: Logistics and Transportation Review, 45(4), 591–610.CrossRefGoogle Scholar
  5. Port of Hamburg (2011a). Container Port Handling in a Global Comparison. http://www.hafen-hamburg.de/en/top20, Accessed 09 September 2011.
  6. Rijsenbrij, J. C., & Wieschemann, A. (2011). Sustainable container terminals: a design approach. In J. W. Böse, R. Sharda, & S. Voß (Eds.), Handbook of terminal planning, Volume 49 of Operations research/computer science interfaces series (pp. 61–82). Berlin: Springer.CrossRefGoogle Scholar
  7. Saanen, Y. A. (2004). An approach for designing robotized maritime container terminals. Ph.D. Thesis, Technical University of Delft, Rotterdam.Google Scholar
  8. Saanen, Y. A. (2006). High density terminals: RTG or RMG? In Proceedings of TOC Americas 2006, Acapulco (pp. 1–21).Google Scholar
  9. Saanen, Y. A. (2007). State-of-the-Art Technology in automation: comparing the key technologies on cost and performance. In Proceedings of TOC Europe 2007, Istanbul.Google Scholar
  10. Saanen, Y. A. (2008). Automated container handling. Freight international. http://www.freight-int.com/categories/automated-container-handling/automated-container-handling.asp, Accessed 09 September 2011.
  11. Saanen, Y. A., & Valkengoed, M. V. (2005). Comparison of three automated stacking alternatives by means of simulation. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, & J. A. Joines (Eds.), Proceedings of the 2005 winter simulation conference, Orlando, FL (pp. 1567–1576).CrossRefGoogle Scholar
  12. Sciomachen, A., & Tanfani, E. (2007). A 3D-BPP approach for optimising stowage plans and technical productivity. European Journal of Operational Research, 183(3), 1433–1446.CrossRefGoogle Scholar
  13. Smith, A. (1776). An inquiry into the nature and causes of the wealth of nations. London: W. Strahan and T. Cadell.Google Scholar
  14. UNCTAD (2007). Review of maritime transport 2007. New York: United Nations Conference on Trade and Development.Google Scholar
  15. UNCTAD (2008). Review of maritime transport 2008. New York: United Nations Conference on Trade and Development.Google Scholar
  16. Valkengoed, M. P. J. v. (2004). How passing cranes influence stack operations in a container terminal: a simulation study. Diploma Thesis, University of Amsterdam.Google Scholar
  17. Vis, I. F. A., & Harika, I. (2004). Comparison of vehicle types at an automated container terminal. OR Spectrum, 26(1), 117–143.CrossRefGoogle Scholar
  18. Wiese, J., Kliewer, N., & Suhl, L. (2009a). A Survey of Container Terminal Characteristics and Equipment Types. Working Paper 0901, Decision Support & Operations Research Lab, University of Paderborn.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Kemme
    • 1
  1. 1.University of HamburgHamburgGermany

Personalised recommendations