Skip to main content

Co-evolution of Legal and Voluntary Standards: Development of Energy Efficiency in Swiss Residential Building Codes

  • Chapter
  • First Online:
Co-Evolution of Standards in Innovation Systems

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 779 Accesses

Abstract

The residential building sector contributes significantly to greenhouse gas (GHG) emissions. Improving the level of energy efficiency required by building codes for refurbishments and new construction is a powerful lever for GHG reductions. The purpose of this chapter is to explore how technological, social, political, and economic factors interact and shape the evolution of the energy efficiency in building codes. Existing approaches to the evolution of standards focus primarily on adopting individual or multiple technologies or products, but only peripherally explore the feedback dynamics between innovation, diffusion, and standardization (IDS). To fill this void, I draw on the revelatory case of Switzerland, because in that country the standards have continuously improved since 1970, whereas in many other countries improvements have stalled after the recovery from peaks in energy prices. The chapters contribution is, first, a qualitative, structural model which endogenously formalizes the IDS-dynamics of standard improvement. I find that the co-evolution of voluntary and legal building codes enabled a continuous improvement of the standards even in the absence of economic pressures. And second, I use the model for prospective policy analysis, which indicates that several obvious policies might cause policy resistance and could result in uneconomical, counter-intuitive outcomes. Policy interventions have to balance the speed of innovation and the ability of system agents to change.

To successfully respond to the myriad of changes that shake the world, transformation into a new style of management is required. The route to take is what I call profound knowledge-knowledge for leadership of transformation. Deming (2000)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Minergie® Association was inaugurated in 1998. It defines, publishes, and promotes the voluntary, innovative energy efficiency standard Minergie®. It is a registered trademark and quality label for new and refurbished buildings. Today, Minergie® builds an umbrella for four standards. The webpage http://www.minergie.com provides the latest information about the requirements.

References

  • Abrahamson, E., & Rosenkopf, L. (1997). Social network effects on the extent of innovation diffusion: A computer simulation. Organization Science, 8(3), 289–309.

    Google Scholar 

  • Acker, R. H., & Kammen, D. M. (1996). The quiet (energy) revolution—Analysing the dissemination of photovoltaic power systems in Kenya. Energy Policy, 24(1), 81–111.

    Google Scholar 

  • Alberth, S. (2008). Forecasting technology costs via the experience curve: Myth or magic? Technological Forecasting and Social Change, 75(7), 952–983.

    Google Scholar 

  • Amstalden, R. W., Kost, M., Nathani, C., & Imboden, D. M. (2007). Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations. Energy Policy, 35(3), 1819–1829.

    Google Scholar 

  • Andersen, D. F., & Richardson, G. P. (1997). Scripts for group model building. System Dynamics Review, 13(2), 107–129.

    Google Scholar 

  • Ansar, J., & Sparks, R. (2009). The experience curve, option value, and the energy paradox. Energy Policy, 37(3), 1012–1020.

    Google Scholar 

  • Arkesteijn, K., & Oerlemans, L. (2005). The early adoption of green power by Dutch households: An empirical exploration of factors influencing the early adoption of green electricity for domestic purposes. Energy Policy, 33(2), 183–196.

    Google Scholar 

  • Audenaert, A., De Cleyn, S. H., & Vankerckhove, B. (2008). Economic analysis of passive houses and low-energy houses compared with standard houses. Energy Policy, 36(1), 47–55.

    Google Scholar 

  • AWEL. (2007). Energieplanungsbericht 2006: Bericht des Regierungsrates Ă¼ber die Energieplanung des Kantons ZĂ¼rich. Zurich, Switzerland: AWEL, Abteilung Energie.

    Google Scholar 

  • Azar, C., & Dowlatabadi, H. (1999). A review of technical change in assessment of climate policy. Annual Review Energy and Environment, 24, 513–544.

    Google Scholar 

  • Bass, F. M. (1969). New product growth for model consumer durables. Management Science, 15(5), 215–227.

    Google Scholar 

  • Bass, F. M. (1980). The relationship between diffusion rates, experience curves, and demand elasticities for consumer durable technological innovations. Journal of Business, 53(3), S51–S67.

    Google Scholar 

  • Beerepoot, M., & Beerepoot, N. (2007). Government regulation as an impetus for innovation: Evidence from energy performance regulation in the Dutch residential building sector. Energy Policy, 35(10), 4812–4825.

    Google Scholar 

  • BFE. (2001). Energie Schweiz: Das Nachfolgeprogramm von Energie 2000. Berne, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • BFE. (2002). Rationelle Energienutzung in Gebäuden: Aktivitäten und Projekte 2002. Berne, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • BFE. (2005). Nachbefragung und Erfolgskontrolle Investitionsprogramm Energie 2000: Schlussbericht. Berne, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • Biermayr, P., Baumann, B., Schriefl, E., Skopetz, H., Stieldorf, K., Zelenka, H., et al. (2001). Analyse fördernder und hemmender Faktoren bei der MarkteinfĂ¼hrung von innovativen Wohnbauten: Endbericht. Wien, Austria: Institut fĂ¼r Energiewirtschaft.

    Google Scholar 

  • Biermayr, P., Schriefl, E., Baumann, B., & Sturm, A. (2002). Hemmnisse und fördernde Faktoren bei der MarkteinfĂ¼hrung innovativer Wohnbauten: eine Informationsoffensive fĂ¼r Planer, Wohnbauträger und Technologieproduzenten. Wien, Austria: Bundesministerium fĂ¼r Verkehr, Innovation und Technologie.

    Google Scholar 

  • BP. (2009). Oil price statistics from 1871. Accessed September 23, 2009, from http://www.bp.com/sectiongenericarticle.do?categoryId9023773contentId7044469.

  • Bucklin, L. P., & Sengupta, S. (1993). The co-diffusion of complementary innovations: Supermarket scanners and UPC symbols. Journal of Product Innovation Management, 10(2), 148–160.

    Google Scholar 

  • Cantono, S., & Silverberg, G. (2009). A percolation model of eco-innovation diffusion: The relationship between diffusion, learning economies and subsidies. Technological Forecasting and Social Change, 76(4), 487–496.

    Google Scholar 

  • CCEM. (2011). CCEM retrofit: Advanced low energy renovation of buildings. Accessed July 1, 2011, from http://www.empa-ren.ch/ccem-retrofit.htm.

  • Chatterjee, K., & Xu, S. H. (2004). Technology diffusion by learning from neighbours. Advances in Applied Probability, 36(2), 355–376.

    Google Scholar 

  • Clayton, M. C. (2003). The innovator’s dilemma: The revolutionary book that will change the way you do business. Cambridge, MA: Harper Paperbacks.

    Google Scholar 

  • Consoli, D. (2008). Co-evolution of capabilities and preferences in the adoption of new technologies. Technology Analysis and Strategic Management, 20(4), 409–425.

    Google Scholar 

  • Coyle, R. G. (1984). A systems approach to the management of a hospital for short-term patients. Socio-Economic Planning Sciences, 18(4), 219–226.

    Google Scholar 

  • Coyle, R. G. (1996). System dynamics modelling: A practical approach. London: Chapman and Hall.

    Google Scholar 

  • Coyle, R. G. (2000). Qualitative and quantitative modelling in system dynamics: Some research questions. System Dynamics Review, 16(3), 225–244.

    Google Scholar 

  • DattĂ©e, B., & Weil, H. B. (2007). Dynamics of social factors in technological substitutions. Technological Forecasting and Social Change, 74(5), 579–607.

    Google Scholar 

  • de Vries, H. J., de Ruijter, J. P. M., & Argam, N. (2011). Dominant design or multiple designs: The flash memory card case. Technology Analysis and Strategic Management, 23(3), 249–262.

    Google Scholar 

  • Delley, J. D., & Mader, L. (1986). L’état face auf defi energetique, Ă©tudes et pratique. Lausanne: Payot.

    Google Scholar 

  • Deming, W. E. (2000). The new economics for industry, government, education. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Dijk, M., & Yarime, M. (2010). The emergence of hybrid-electric cars: Innovation path creation through co-evolution of supply and demand. Technological Forecasting and Social Change, 77(8), 1371–1390.

    Google Scholar 

  • DOE. (2009). Residential energy consumption. Accessed September 23, 2009, from http://www.eia.doe.gov/emeu/consumption/index.html.

  • Dosi, G. (1982). Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Research Policy, 11(3), 147–162.

    Google Scholar 

  • Dowlatabadi, H., & Oravetz, M. A. (2006). US long-term energy intensity: Backcast and projection. Energy Policy, 34(17), 3245–3256.

    Google Scholar 

  • Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Arvizu, D., Bruckner, T., et al. (2011). Summary for policy makers. In IPCC special report on renewable energy sources and climate change mitigation. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Edquist, C. (2006). The systemic nature of innovation. Oxford: Oxford Handbooks Online.

    Google Scholar 

  • Eisenhardt, K. M. (1989). Building theories from case-study research. Academy of Management Review, 14(4), 532–550.

    Google Scholar 

  • Elias, A. A. (2008). Energy efficiency in New Zealand’s residential sector: A systemic analysis. Energy Policy, 36(9), 3278–3285.

    Google Scholar 

  • EnDK. (2011). Mustervorschriften der Kantone im Energiebereich (MuKEn). Zurich. Accessed May 10, 2011, from http://www.endk.ch/kantone.html.

  • ETH Council. (1998). Strategie Nachhaltigkeit im ETH-Bereich: 2000 Watt-Gesellschaft: Modell Schweiz. Accessed October 1, 2005, from http://www.novatlantis.ch/projects/2000W/brochure/resources/pdf/ge_brochure.pdf.

  • Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3(2), 75–88.

    Google Scholar 

  • Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: Productivity Press.

    Google Scholar 

  • Forrester, J. W. (1971). Counterintuitive behavior of social systems. Technology Review, 73(3), 52–68.

    Google Scholar 

  • FSO. (2008). Swiss environmental statistics: A brief guide 2008. Berne, Switzerland: Federal Office of Statistics.

    Google Scholar 

  • Gann, D. M., Wang, Y. S., & Hawkins, R. (1998). Do regulations encourage innovation? The case of energy efficiency in housing. Building Research and Information, 26(5), 280–296.

    Google Scholar 

  • Gantenbein, K. (2009). Building for the 2000-watt society: The state of affairs. Zurich, Switzerland.

    Google Scholar 

  • Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Research Policy, 33(6–7), 897–920.

    Google Scholar 

  • Geels, F. W. (2005a). Processes and patterns in transitions and system innovations: Refining the co-evolutionary multi-level perspective. Technological Forecasting and Social Change, 72(6), 681–696.

    Google Scholar 

  • Geels, F. W. (2005b). The dynamics of transitions in socio-technical systems: A multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technology Analysis and Strategic Management, 17(4), 445–476.

    Google Scholar 

  • Geels, F. W., Hekkert, M. P., & Jacobsson, S. (2008). The dynamics of sustainable innovation journeys. Technology Analysis and Strategic Management, 20(5), 521–536.

    Google Scholar 

  • Groesser, S. N., & Schaffernicht, M. (2012). Mental models of dynamic systems: Taking stock and looking ahead. System Dynamics Review.

    Google Scholar 

  • Groesser, S. N., & Schwaninger, M. (2012, in press). Contributions to model validation: hierarchy, process, and cessation. System Dynamics Review.

    Google Scholar 

  • Groesser, S. N., & Ulli-Beer, S. (2007). Structure and dynamics of the residential building environment: What mechanisms determine the development of the building stock? Paper presented at the 25th international conference of the System Dynamics Society, Boston.

    Google Scholar 

  • Groesser, S. N., & Ulli-Beer, S. (2008). Long-term innovation diffusion in the building construction industry: Empirically-based theory building. Paper presented at the 26th international conference of the System Dynamics Society, Athens, Greece.

    Google Scholar 

  • Gyberg, P., & Palm, J. (2009). Influencing households’ energy behaviour: How is this done and on what premises? Energy Policy, 37(7), 2807–2813.

    Google Scholar 

  • Hekkert, M. P., & Negro, S. O. (2009). Functions of innovation systems as a framework to understand sustainable technological change: Empirical evidence for earlier claims. Technological Forecasting and Social Change, 76(4), 584–594.

    Google Scholar 

  • Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413–432.

    Google Scholar 

  • Henderson, R. (1995). Of life-cycles real and imaginary: The unexpectedly long old-age of optical lithography. Research Policy, 24(4), 631–643.

    Google Scholar 

  • Hens, H., Verbeeck, G., & Verdonck, B. (2001). Impact of energy efficiency measures on the CO2-emissions in the residential sector: A large-scale analysis. Energy and Buildings, 33(3), 275–281.

    Google Scholar 

  • Higgins, A., Foliente, G., & McNamara, C. (2011). Modelling intervention options to reduce GHG-emissions in housing stock: A diffusion approach. Technological Forecasting and Social Change, 78(4), 621–634.

    Google Scholar 

  • Ho, T. H., Savin, S., & Terwiesch, C. (2002). Managing demand and sales dynamics in new product diffusion under supply constraint. Management Science, 48(2), 187–206.

    Google Scholar 

  • Hung, S. C. (2002). The co-evolution of technologies and institutions: A comparison of Taiwanese hard disk drive and liquid crystal display industries. R and D Management, 32(3), 179–190.

    Google Scholar 

  • Inoue, Y., & Miyazaki, K. (2008). Technological innovation and diffusion of wind power in Japan. Technological Forecasting and Social Change, 75(8), 1303–1323.

    Google Scholar 

  • IPCC. (2001). Climate change 2001: Synthesis report: Summary for policymakers. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • IPCC. (2007). Summary for policymakers, in climate change 2007: The physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Islam, T., & Meade, N. (1997). The diffusion of successive generations of a technology: A more general model. Technological Forecasting and Social Change, 56(1), 49–60.

    Google Scholar 

  • Jaffe, A. B., & Stavins, R. N. (1994a). The energy paradox and the diffusion of conservation technology. Resource and Energy Economics, 16(2), 91–122.

    Google Scholar 

  • Jaffe, A. B., & Stavins, R. N. (1994b). The energy-efficiency gap: What does it mean. Energy Policy, 22(10), 804–810.

    Google Scholar 

  • Jakob, M. (2006). Marginal costs and co-benefits of energy efficiency investments: The case of the Swiss residential sector. Energy Policy, 34(2), 172–187.

    Google Scholar 

  • Jakob, M. (2008). Grundlagen zur Wirkungsabschätzung der Energiepolitik der Kantone im Gebäudebereich. Berne, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • Kägi, W., Schäfli, M., Siegrist, S., & Hässig, W. (2004). Best practice: Marktordnung, Markttransparenz und Marktregelung zugunsten der Durchsetzung energieeffizienter Lösungen am Markt. Berne, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • Kapur, S. (1995). Technological diffusion with social-learning. The Journal of Industrial Economics, 43(2), 173–195.

    Google Scholar 

  • Kaufmann, M., & NĂ¼tzi, H.-P. (2005). EnergieSchweiz in der 2. Etappe—mehr Wirkung, mehr Nutzen. Berne, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • Koetse, M. J., van der Vlist, A. J., & de Groot, H. L. F. (2006). The impact of perceived expectations and uncertainty on firm investment. Small Business Economics, 26(4), 365–376.

    Google Scholar 

  • Koschenz, M., & Pfeiffer, A. (2005). Potenzial Wohngebäude: Energie- und Gebäudetechnik fĂ¼r die 2000-Watt-Gesellschaft. ZĂ¼rich, Switzerland: Faktor-Verlag.

    Google Scholar 

  • Lee, J. R., Oneal, D. E., Pruett, M. W., & Thomas, H. (1995). Planning for dominance: A strategic perspective on the emergence of a dominant design. R and D Management, 25(1), 3–15.

    Google Scholar 

  • Levine, M., Uerge-Vorsatz, D., Blok, K., Geng, L., Harvey, D., Lang, S., et al. (2007). Residental and commercial buildings: Contribution of Working Group III to the fourth assessment report of the intergovernmental panel on climage change. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: Mitigation. Cambridge, UK/New York: Cambridge University Press.

    Google Scholar 

  • Lockwood, C. (2006). Building the green way. Harvard Business Review, 84(6), 129–136.

    Google Scholar 

  • Lundvall, B. A., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31(2), 213–231.

    Google Scholar 

  • MacKerron, G. J., Egerton, C., Gaskell, C., Parpia, A., & Mourato, S. (2009). Willingness to pay for carbon offset certification and co-benefits among (high-) flying young adults in the UK. Energy Policy, 37(4), 1372–1381.

    Google Scholar 

  • Marechal, F., Favrat, D., & Jochem, E. (2005). Energy in the perspective of the sustainable development: The 2000-watt society challenge. Resources, Conservation and Recycling, 44(3), 245–262.

    Google Scholar 

  • McDonald, A., & Schrattenholzer, L. (2001). Learning rates for energy technologies. Energy Policy, 29(4), 255–261.

    Google Scholar 

  • McKinsey & Company. (2009). Swiss greenhouse gas cost abatement curve. Zurich, Switzerland: Author.

    Google Scholar 

  • McKinsey & Company. (2010). Impact of the financial crisis on carbon economics: Version 2.1 of the global greenhouse gas abatement cost curve. Zurich, Switzerland: Author.

    Google Scholar 

  • Meadows, D. H., Meadows, D., Randers, J., & Behrens, W. W., III. (1972). The limits to growth. New York: Universe Books.

    Google Scholar 

  • Meier, R., & Ott, W. (2005). Grundlagen fĂ¼r eine Strategie Gebäudepark Schweiz. Bern, Switzerland: Swiss Federal Office of Energy.

    Google Scholar 

  • Meijer, F., Itard, L., & Sunikka-Blank, M. (2009). Comparing European residential building stocks: Performance, renovation, and policy opportunities. Building Research and Information, 37(5–6), 533–551.

    Google Scholar 

  • Merito, M., & Bonaccorsi, A. (2007). Co-evolution of physical and social technologies in clinical practice: The case of HIV-treatments. Research Policy, 36(7), 1070–1087.

    Google Scholar 

  • MĂ¼ller, M. O., Groesser, S. N., & Ulli-Beer, S. (2012). How do we know who to include in transdisciplinary research? Toward a method for the identification of experts. European Journal of Operational Research, 216(2), 495–502.

    Google Scholar 

  • Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8–9), 1389–1403.

    Google Scholar 

  • Nassen, J., & Holmberg, J. (2005). Energy efficiency—A forgotten goal in the Swedish building sector? Energy Policy, 33(8), 1037–1051.

    Google Scholar 

  • Nassen, J., Sprei, F., & Holmberg, J. (2008). Stagnating energy efficiency in the Swedish building sector-economic and organisational explanations. Energy Policy, 36(10), 3814–3822.

    Google Scholar 

  • Negro, S. O., & Hekkert, M. P. (2008). Explaining the success of emerging technologies by innovation system functioning: The case of biomass digestion in Germany. Technology Analysis and Strategic Management, 20(4), 465–482.

    Google Scholar 

  • Nemet, G. F. (2009). Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Research Policy, 38(5), 700–709.

    Google Scholar 

  • OECD/IEA. (1997). IAE energy technology R&D statistics 1975–1995. Paris Cedex: Author.

    Google Scholar 

  • Pfeiffer, A., & Koschenz, M. (2005). Energy and building technology for the 2000-watt society: Potential of residential buildings in Switzerland. Energy and Buildings, 37, 1158–1174.

    Google Scholar 

  • Ravetz, J. (2008). State of the stock-what do we know about existing buildings and their future prospects? Energy Policy, 36(12), 4462–4470.

    Google Scholar 

  • Roberts, S. (2008). Altering existing buildings in the UK. Energy Policy, 36(12), 4482–4486.

    Google Scholar 

  • Rogers, E. M. (2003). The diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  • Schnieders, E., & Hermelink, A. (2006). CEPHEUS results: Measurements and occupants’ satisfaction provide evidence for passive houses being an option for sustainable building. Energy Policy, 34(2), 151–171.

    Google Scholar 

  • Schulz, T. F. (2007). Intermediate steps towards the 2000-watt society in Switzerland: An energy-economic scenario analysis. Swiss Federal Institute of Technology Zurich: Dissertation.

    Google Scholar 

  • Schwaninger, M., & Groesser, S. N. (2008). Model-based theory-building with system dynamics. Systems Research and Behavioral Science, 25(4), 447–465.

    Google Scholar 

  • SFOE. (2005). Internationaler Vergleich von Energiestandards im Baubereich. Berne, Switzerland: Author.

    Google Scholar 

  • SFOE. (2007). Vorstudie zur Erhebung von Energiekennzahlen von Wohnbauten. Berne, Switzerland: Author.

    Google Scholar 

  • Siller, T., Kost, M., & Imboden, D. (2007). Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector. Energy Policy, 35(1), 529–539.

    Google Scholar 

  • Sokolov, A. P., Stone, P. H., Prinn, R., Sarofim, M. C., Webster, M., Paltsev, S., et al. (2009). Probabilistic forecast for 21st century climate based on uncertainties in emission (without policy) and climate parameters, Report Series of the MIT Joint Program on the Science and Policy of Global Change. Boston: Massachusetts Institute of Technology.

    Google Scholar 

  • Sorrell, S., Dimitropoulos, J., & Sommerville, M. (2009). Empirical estimates of the direct rebound effect: A review. Energy Policy, 37(4), 1356–1371.

    Google Scholar 

  • Sterman, J. D. (1994). Learning in and about complex-systems. System Dynamics Review, 10(2–3), 291–330.

    Google Scholar 

  • Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston: McGraw-Hill.

    Google Scholar 

  • Stern, P. C. (2005). Understanding individual’s environmentally significant behavior. ELR News and Analysis, 35(11), 10785–10790.

    Google Scholar 

  • Stoneman, P. (2002). The economics of technical diffusion. Oxford, UK: Blackwell.

    Google Scholar 

  • Stoneman, P., & Diederen, P. (1994). Technology diffusion and public policy. The Economic Journal, 104(11), 918–930.

    Google Scholar 

  • Strauss, A. L., & Corbin, J. M. (1998). Basics of qualitative research techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Suarez, F. F., & Utterback, J. M. (1995). Dominant designs and the survival of firms. Strategic Management Journal, 16(6), 415–430.

    Google Scholar 

  • Sunikka, M. (2006). Energy efficiency and low-carbon technologies in Urban renewal. Building Research and Information, 34(6), 521–533.

    Google Scholar 

  • Sweeney, J. C., Soutar, G. N., & Mazzarol, T. (2008). Factors influencing word of mouth effectiveness: Receiver perspectives. European Journal of Marketing, 42(3–4), 344–364.

    Google Scholar 

  • Urge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy, 36(2), 642–661.

    Google Scholar 

  • Utterback, J. M. (1994). Mastering the dynamics of innovation: How companies can seize opportunities in the face of technological change. Boston: Harvard Business School Press.

    Google Scholar 

  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478.

    Google Scholar 

  • Vennix, J. A. M. (1996). Group model building: Facilitating team learning using system dynamics. Chichester, UK: Wiley.

    Google Scholar 

  • Vermeulen, W. J. V., & Hovens, J. (2006). Competing explanations for adopting energy innovations for new office buildings. Energy Policy, 34(17), 2719–2735.

    Google Scholar 

  • Weber, L. (1997). Some reflections on barriers to the efficient use of energy. Energy Policy, 25(10), 833–835.

    Google Scholar 

  • Weil, H. B. (2010). Why markets make mistakes. Kybernetes, 39(9/10), 1429–1451.

    Google Scholar 

  • Yin, R. K. (2003). Case study research. Beverly Hills, CA: Sage.

    Google Scholar 

  • Young, H. P. (2005). The spread of innovations through social learning. Washington, DC: Johns Hopkins University.

    Google Scholar 

  • YĂ¼cel, G. & van Daalen, C. E. (2011). Exploratory analysis of the impact of information dynamics on innovation diffusion. Technological Forecasting and Social Change, 78(2):358–372.

    Google Scholar 

Download references

Acknowledgements

The author thanks Silvia Ulli-Beer, Ruth Kaufmann-Hayoz, Markus Schwaninger, and Henry Weil, session participants at the International System Dynamics Conferences 2007 and 2008, as well as participants at the Academy of Management Conference 2009, for their helpful comments. In addition, I am grateful for the support from the project participants during my research in Switzerland. I am indebted to the Massachusetts Institute of Technology for supporting him during his sabbatical. The study was funded by the Swiss National Science Foundation (405440-107211/1).

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Table A.1 List of expert interviews
Table A.2 Model variables (part 1, alphabetical order)
Table A.3 Model variables (part 2, alphabetical order)
Table A.4 Feedback loops of the model (part 1)
Table A.5 Feedback loops of the model (part 2)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grösser, S.N. (2013). Co-evolution of Legal and Voluntary Standards: Development of Energy Efficiency in Swiss Residential Building Codes. In: Co-Evolution of Standards in Innovation Systems. Contributions to Management Science. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2858-0_5

Download citation

Publish with us

Policies and ethics