Skip to main content

Literature Review

  • Chapter
  • First Online:
Book cover Co-Evolution of Standards in Innovation Systems

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 692 Accesses

Abstract

The literature offers at least four threads from which theory and insights might be woven. These are (1) research on technological innovation systems, (2) innovation diffusion studies, (3) studies on dominant design, and (4) studies about energy efficiency in the residential building sector. For each, this chapter reviews only the most relevant studies to understand what each thread can contribute to analyzing the phenomenon of diffusion and co-evolution of building standards. The review has shown that each stream of research is related to the topic addressed here, but also that the streams do not address the phenomenon as I intend to do. Research in technological innovation systems (TIS) focuses on the development of technologies and not on development in standards. Research on innovation diffusion concentrates too narrowly on the level of products, technologies, or services. Studies of dominant design are most often about standards directly competing for market dominance, not about norms that evolve in the mode of symbiotic competition at the edges of their markets. Energy studies about the (Swiss) residential building sector use models which seem to be rich in detail complexity but not in dynamic feedback complexity, leaving out relevant ripple effects when it comes to policy analysis. To conclude, the review of the literature revealed that it could not sufficiently explain the co-evolution of building codes in a socio-technical system. That is the gap which the book addresses.

Past is experience, present is experiment and future is expectation.

Unknown

Mind the Gap!

London Underground, originally used at the Embankment Station, Northern Line, 1969

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the book, I use the term “agents” to represent an abstract conceptualization of real-life “actors” in a system. A more detailed discussion about this terminology is available in Müller et al. (2012).

  2. 2.

    The 2000 Watt Society is a political vision to achieve an energy demand of 2,000 W per capita; Chap. 4 provides more details.

References

  • Abernathy, W. J., & Utterback, J. M. (1975). A dynamic model of product and process innovation. Omega, 3(8), 639–656.

    Google Scholar 

  • Abernathy, W. J., & Utterback, J. M. (1978). Patterns of industrial innovation. Technology Review, 80(7), 40–47.

    Google Scholar 

  • Abrahamson, E., & Rosenkopf, L. (1997). Social network effects on the extent of innovation diffusion: A computer simulation. Organization Science, 8(3), 289–309.

    Article  Google Scholar 

  • Acker, R. H., & Kammen, D. M. (1996). The quiet (Energy) revolution—Analysing the dissemination of photovoltaic power systems in Kenya. Energy Policy, 24(1), 81–111.

    Article  Google Scholar 

  • Amstalden, R. W., Kost, M., Nathani, C., & Imboden, D. M. (2007). Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations. Energy Policy, 35(3), 1819–1829.

    Article  Google Scholar 

  • Ansar, J., & Sparks, R. (2009). The experience curve, option value, and the energy paradox. Energy Policy, 37(3), 1012–1020.

    Article  Google Scholar 

  • Asheim, B. T., & Coenen, L. (2005). Knowledge bases and regional innovation systems: Comparing Nordic clusters. Research Policy, 34(8), 1173–1190.

    Article  Google Scholar 

  • Atkinson, J. G. B., Jackson, T., & Mullings-Smith, E. (2009). Market influence on the low carbon energy refurbishment of existing multi-residential buildings. Energy Policy, 37(7), 2582–2593.

    Article  Google Scholar 

  • Audenaert, A., De Cleyn, S. H., & Vankerckhove, B. (2008). Economic analysis of passive houses and low-energy houses compared with standard houses. Energy Policy, 36(1), 47–55.

    Article  Google Scholar 

  • Baptista, R. (1999). The diffusion of process innovations: A selective review. Journal of Economics and Business, 6(1), 107–129.

    Article  Google Scholar 

  • Bass, F. M. (1969). New product growth for model consumer durables. Management Science, 15(5), 215–227.

    Article  Google Scholar 

  • Beerepoot, M., & Beerepoot, N. (2007). Government regulation as an impetus for innovation: Evidence from energy performance regulation in the Dutch residential building sector. Energy Policy, 35(10), 4812–4825.

    Article  Google Scholar 

  • Besen, S. M., & Farrell, J. (1994). Choosing how to compete—Strategies and tactics in standardization. Journal of Economic Perspectives, 8(2), 117–131.

    Article  Google Scholar 

  • Biermayr, P., Baumann, B., Schriefl, E., Skopetz, H., Stieldorf, K., Zelenka, H., Berger, M., & Ornetzeder, M. (2001). Analyse fördernder und hemmender Faktoren bei der Markteinführung von innovativen Wohnbauten: Endbericht. Wien: Institut für Energiewirtschaft.

    Google Scholar 

  • Brown, M. A. (1984). Change mechanisms in the diffusion of residential energy-conservation practices: An empirical-study. Technological Forecasting and Social Change, 25(2), 123–138.

    Article  Google Scholar 

  • Bucklin, L. P., & Sengupta, S. (1993). The co-diffusion of complementary innovations—Supermarket scanners and Upc symbols. Journal of Product Innovation Management, 10(2), 148–160.

    Article  Google Scholar 

  • Burby, R. J., Salvesen, D., & Creed, M. (2006). Encouraging residential rehabilitation with building codes: New Jersey’s experience. Journal of the American Planning Association, 72(2), 183–196.

    Article  Google Scholar 

  • Carlsson, B., & Stankiewicz, R. (1991). On the nature, function and composition of technological systems. Journal of Evolutionary Economics Letters, 1(1), 93–118.

    Article  Google Scholar 

  • Carlsson, B., Jacobsson, S., Holmen, M., & Rickne, A. (2002). Innovation systems: Analytical and methodological issues. Research Policy, 31(2), 233–245.

    Article  Google Scholar 

  • Chan, E. H. W., Qian, Q. K., & Lam, P. T. I. (2009). The market for green building in developed Asian cities: The perspectives of building designers. Energy Policy, 37(8), 3061–3070.

    Article  Google Scholar 

  • Clayton, M. C. (2003). The innovator’s dilemma: The revolutionary book that will change the way you do business. Cambridge, MA: Harper Paperbacks.

    Google Scholar 

  • Consoli, D. (2008). Co-evolution of capabilities and preferences in the adoption of new technologies. Technology Analysis & Strategic Management, 20(4), 409–425.

    Article  Google Scholar 

  • Cuddihy, J., Kennedy, C., & Byer, P. (2005). Energy use in Canada: Environmental impacts and opportunities in relationship to infrastructure systems. Canadian Journal of Civil Engineering, 32(1), 1–15.

    Article  Google Scholar 

  • Darley, J. M., & Beniger, J. R. (1981). Diffusion of energy-conserving innovations. Journal of Social Issues, 37(2), 150–171.

    Article  Google Scholar 

  • Dattée, B., & Weil, H. B. (2007). Dynamics of social factors in technological substitutions. Technological Forecasting and Social Change, 74(5), 579–607.

    Article  Google Scholar 

  • de Vries, H. J., de Ruijter, J. P. M., & Argam, N. (2011). Dominant design or multiple designs: The flash memory card case. Technology Analysis & Strategic Management, 23(3), 249–262.

    Article  Google Scholar 

  • Dijk, M., & Yarime, M. (2010). The emergence of hybrid-electric cars: Innovation path creation through co-evolution of supply and demand. Technological Forecasting and Social Change, 77(8), 1371–1390.

    Article  Google Scholar 

  • Fisher, J. C., & Pry, R. H. (1971). A simple substitution model of technological change. Technological Forecasting and Social Change, 3(1), 75–88.

    Article  Google Scholar 

  • Fisk, D. (2008). What are the risk-related barriers to, and opportunities for, innovation from a business perspective in the UK, in the context of energy management in the built environment? Energy Policy, 36(12), 4615–4617.

    Article  Google Scholar 

  • Freeman, C. (1987). Technology policy and economic performance: Lessons from Japan. London: Pinter Publishing.

    Google Scholar 

  • Ganguly, I., Koebel, C. T., & Cantrell, R. A. (2010). A categorical modeling approach to analyzing new product adoption and usage in the context of the building-materials industry. Technological Forecasting and Social Change, 77(4), 662–677.

    Article  Google Scholar 

  • Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Research Policy, 33(6–7), 897–920.

    Article  Google Scholar 

  • Godin, B. (2009). National innovation system the system approach in historical perspective. Science Technology & Human Values, 34(4), 476–501.

    Article  Google Scholar 

  • Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technological-change. Econometrica, 25(4), 501–522.

    Article  Google Scholar 

  • Hauser, J., Tellis, G. J., & Griffin, A. (2006). Research on innovation: A review and agenda for marketing science. Marketing Science, 25(6), 687–717.

    Article  Google Scholar 

  • Hekkert, M. P., Harmsen, R., & de Jong, A. (2007). Explaining the rapid diffusion of Dutch cogeneration by innovation system functioning. Energy Policy, 35(9), 4677–4687.

    Article  Google Scholar 

  • Hekkert, M. P., Suurs, R. A. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. H. M. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological Forecasting and Social Change, 74(4), 413–432.

    Article  Google Scholar 

  • Higgins, A., Foliente, G., & McNamara, C. (2011). Modelling intervention options to reduce GHG emissions in housing stock—A diffusion approach. Technological Forecasting and Social Change, 78(4), 621–634.

    Article  Google Scholar 

  • Howarth, R. B., Haddad, B. M., & Paton, B. (2000). The economics of energy efficiency: Insights from voluntary participation programs. Energy Policy, 28(6–7), 477–486.

    Article  Google Scholar 

  • Hung, S. C. (2002). The co-evolution of technologies and institutions: A comparison of Taiwanese hard disk drive and liquid crystal display industries. R & D Management, 32(3), 179–190.

    Article  Google Scholar 

  • Imrie, R. (2007). The interrelationships between building regulations and architects’ practices. Environment and Planning B: Planning and Design, 34(5), 925–943.

    Article  Google Scholar 

  • Islam, T., & Meade, N. (1997). The diffusion of successive generations of a technology: A more general model. Technological Forecasting and Social Change, 56(1), 49–60.

    Article  Google Scholar 

  • Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: An analytical framework and key issues for research. Energy Policy, 28(9), 625–640.

    Article  Google Scholar 

  • Jacobsson, S., & Bergek, A. (2004). Transforming the energy sector: The evolution of technological systems in renewable energy technology. Industrial and Corporate Change, 13(5), 815–849.

    Article  Google Scholar 

  • Jager, W. (2006). Stimulating the diffusion of photovoltaic systems: A behavioural perspective. Energy Policy, 34(14), 1935–1943.

    Article  Google Scholar 

  • Joelsson, A., & Gustavsson, L. (2008). Perspectives on implementing energy efficiency in existing Swedish detached houses. Energy Policy, 36(1), 84–96.

    Article  Google Scholar 

  • Johansson, P., Nylander, A., & Johnsson, F. (2006). Electricity dependency and CO2-emissions from heating in the Swedish building sector—Current trends in conflict with governmental policy? Energy Policy, 34(17), 3049–3064.

    Article  Google Scholar 

  • Kannan, R., & Strachan, N. (2009). Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches. Applied Energy, 86(4), 416–428.

    Article  Google Scholar 

  • Koschenz, M., & Pfeiffer, A. (2005). Potenzial Wohngebäude: Energie- und Gebäudetechnik für die 2000-Watt-Gesellschaft. Zürich: Faktor-Verlag.

    Google Scholar 

  • Lanzolla, G., & Suarez, F. F. (2010). Closing the technology adoption–use divide: The role of contiguous user bandwagon. Journal of Management, 36(5), 345–358.

    Google Scholar 

  • Lee, J. R., Oneal, D. E., Pruett, M. W., & Thomas, H. (1995). Planning for dominance: A strategic perspective on the emergence of a dominant design. R & D Management, 25(1), 3–15.

    Article  Google Scholar 

  • Leydesdorff, L., & Fritsch, M. (2006). Measuring the knowledge base of regional innovation systems in Germany in terms of a triple helix dynamics. Research Policy, 35(10), 1538–1553.

    Article  Google Scholar 

  • Lundvall, B. A. (1992). National systems of innovations: Toward a theory of innovation and interactive learning. London: Pinters Publishing.

    Google Scholar 

  • Lundvall, B. A., Johnson, B., Andersen, E. S., & Dalum, B. (2002). National systems of production, innovation and competence building. Research Policy, 31(2), 213–231.

    Article  Google Scholar 

  • Madlener, R. (2007). Innovation diffusion, public policy, and local initiative: The case of wood-fuelled district heating systems in Austria. Energy Policy, 35(3), 1992–2008.

    Article  Google Scholar 

  • Mahajan, V., & Muller, E. (1979). Innovation diffusion and new product growth-models in marketing. Journal of Marketing, 43(4), 55–68.

    Article  Google Scholar 

  • Mahajan, V., Muller, E., & Bass, F. M. (1990). New product diffusion-models in marketing: A review and directions for research. Journal of Marketing, 54(1), 1–26.

    Article  Google Scholar 

  • Mahajan, V., Muller, E., & Bass, F. M. (1995). Diffusion of new products—Empirical generalizations and managerial uses. Marketing Science, 14(3), G79–G88.

    Article  Google Scholar 

  • Mahajan, V., & Muller, E. (1996). Timing, diffusion, and substitution of successive generations of technological innovations: The IBM mainframe case. Technological Forecasting and Social Change, 51(2), 109–132.

    Article  Google Scholar 

  • Mahajan, V., Muller, E., & Wind, Y. (Eds.). (2000). New-product diffusion models. Boston: Kluwer.

    Google Scholar 

  • Maier, F. H. (1996). Substitution among successive product generations-an almost neglected problem in innovation diffusion models. Paper presented at the 1996 International System Dynamics Conference, Cambridge, MA.

    Google Scholar 

  • Maier, F. H. (1998). New product diffusion models in innovation management—A system dynamics perspective. System Dynamics Review, 14(4), 285–308.

    Article  Google Scholar 

  • Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264.

    Article  Google Scholar 

  • Mansfield, E. (1961). Technical change and the rate of imitation. Econometrica, 29(4), 741–766.

    Article  Google Scholar 

  • Markard, J., & Truffer, B. (2008a). Actor-oriented analysis of innovation systems: Exploring micro-meso level linkages in the case of stationary fuel cells. Technology Analysis & Strategic Management, 20(4), 443–464.

    Article  Google Scholar 

  • Markard, J., & Truffer, B. (2008b). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research Policy, 37(4), 596–615.

    Article  Google Scholar 

  • Mathews, E. H., Richards, P. G., & Vanwyk, S. L. (1995). Energy efficiency of ultra-low-cost housing. Building and Environment, 30(3), 427–432.

    Article  Google Scholar 

  • McEachern, M., & Hanson, S. (2008). Socio-geographic perception in the diffusion of innovation: Solar energy technology in Sri Lanka. Energy Policy, 36(7), 2578–2590.

    Article  Google Scholar 

  • Meade, N., & Islam, T. (2006). Modelling and forecasting the diffusion of innovation—A 25-year review. International Journal of Forecasting, 22(3), 519–545.

    Article  Google Scholar 

  • Meier, R., & Ott, W. (2005). Grundlagen für eine Strategie Gebäudepark Schweiz. Bern: Bundesamt für Energie.

    Google Scholar 

  • Merito, M., & Bonaccorsi, A. (2007). Co-evolution of physical and social technologies in clinical practice: The case of HIV treatments. Research Policy, 36(7), 1070–1087.

    Article  Google Scholar 

  • Milling, P. M. (1986). Decision support for marketing new products. Paper presented at the International Conference of the System Dynamics Society, Seville.

    Google Scholar 

  • Milling, P. M. (1987). Manufacturing’s role in innovation diffusion and technological substitution. Paper presented at the Proceedings of the 1987 International Conference of the System Dynamics Society, Shanghai.

    Google Scholar 

  • Milling, P. M. (1990). Systems research and corporate policy making. Paper presented at the Advances in Systems Research and Cybernetics, Windsor, ON.

    Google Scholar 

  • Milling, P. M. (1991). An integrative view of R&D and innovation processes. Paper presented at the Modelling and Simulation 1991, San Diego, CA.

    Google Scholar 

  • Milling, P. M., & Maier, F. H. (1993). Dynamic consequences of pricing strategies for research & development and the diffusion of innovations. Paper presented at the International System Dynamics Conference, Cancun.

    Google Scholar 

  • Morrissey, J., & Horne, R. E. (2011). Life cycle cost implications of energy efficiency measures in new residential buildings. Energy and Buildings, 43(4), 915–924.

    Article  Google Scholar 

  • Müller, M. O., Groesser, S. N., & Ulli-Beer, S. (2012). How do we know who to include in transdisciplinary research? Toward a method for the identification of experts. European Journal of Operational Research, 216(2), 495–502.

    Article  Google Scholar 

  • Murray, F. (2002). Innovation as co-evolution of scientific and technological networks: Exploring tissue engineering. Research Policy, 31(8–9), 1389–1403.

    Article  Google Scholar 

  • Nassen, J., & Holmberg, J. (2005). Energy efficiency—A forgotten goal in the Swedish building sector? Energy Policy, 33(8), 1037–1051.

    Article  Google Scholar 

  • Negro, S. O., Hekkert, M. P., & Smits, R. E. (2007). Explaining the failure of the Dutch innovation system for biomass digestion: A functional analysis. Energy Policy, 35(2), 925–938.

    Article  Google Scholar 

  • Negro, S. O., & Hekkert, M. P. (2008). Explaining the success of emerging technologies by innovation system functioning: The case of biomass digestion in Germany. Technology Analysis & Strategic Management, 20(4), 465–482.

    Article  Google Scholar 

  • Nemet, G. F. (2009). Demand-pull, technology-push, and government-led incentives for non-incremental technical change. Research Policy, 38(5), 700–709.

    Article  Google Scholar 

  • Peres, R., Muller, E., & Mahajan, V. (2010). Innovation diffusion and new product growth models: A critical review and research direction. International Journal of Research in Marketing, 27(2), 91–106.

    Article  Google Scholar 

  • Pistorius, C. W. I., & Utterback, J. M. (1997). Multi-mode interaction among technologies. Research Policy, 26(1), 67–84.

    Article  Google Scholar 

  • Purohit, P. (2008). Small hydro power projects under clean development mechanism in India: A preliminary assessment. Energy Policy, 36(6), 2000–2015.

    Article  Google Scholar 

  • Qiu, D. X., Gu, S. H., Catania, P., & Huang, K. (1996). Diffusion of improved biomass stoves in China. Energy Policy, 24(5), 463–469.

    Article  Google Scholar 

  • Rogers, E. M. (2003). The diffusion of innovations. New York: Free Press.

    Google Scholar 

  • Safarzynska, K., & van den Bergh, J. C. J. M. (2010a). Evolutionary models in economics: A survey of methods and building blocks. Journal of Evolutionary Economics, 20(3), 329–373.

    Article  Google Scholar 

  • Safarzynska, K., & van den Bergh, J. C. J. M. (2010b). Demand-supply coevolution with multiple increasing returns: Policy analysis for unlocking and system transitions. Technological Forecasting and Social Change, 77(2), 297–317.

    Article  Google Scholar 

  • Safarzynska, K., & van den Bergh, J. C. J. M. (2011). Beyond replicator dynamics: Innovation-selection dynamics and optimal diversity. Journal of Economic Behavior & Organization, 78(3), 229–245.

    Article  Google Scholar 

  • Sartori, I., Wachenfeldt, B. J., & Hestnes, A. G. (2009). Energy demand in the Norwegian building stock: Scenarios on potential reduction. Energy Policy, 37(5), 1614–1627.

    Article  Google Scholar 

  • Schulz, T. F. (2007). Intermediate steps towards the 2000-Watt society in Switzerland: An energy-economic scenario analysis. Swiss Federal Institute of Technology Zurich: Dissertation.

    Google Scholar 

  • Schulz, T. F., Kypreos, S., Barreto, L., & Wokaun, A. (2008). Intermediate steps towards the 2000 W society in Switzerland: An energy-economic scenario analysis. Energy Policy, 36(4), 1303–1317.

    Article  Google Scholar 

  • Schumpeter, J. A. (1926). Theorie der wirtschaftlichen Entwicklung. Berlin: Duncker und Humblot.

    Google Scholar 

  • Sharif, N. (2006). Emergence and development of the national innovation systems concept. Research Policy, 35(5), 745–766.

    Article  Google Scholar 

  • Siller, T., Kost, M., & Imboden, D. (2007). Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector. Energy Policy, 35(1), 529–539.

    Article  Google Scholar 

  • Sterman, J. D. (2000). Business dynamics: Systems thinking and modeling for a complex world. Boston, MA: McGraw-Hill.

    Google Scholar 

  • Suarez, F. F., & Utterback, J. M. (1995). Dominant designs and the survival of firms. Strategic Management Journal, 16(6), 415–430.

    Article  Google Scholar 

  • Sunikka, M. (2006). Energy efficiency and low-carbon technologies in urban renewal. Building Research and Information, 34(6), 521–533.

    Article  Google Scholar 

  • Surrs, R. A. A., & Hekkert, M. P. (2009). Cumulative causation in the formation of a technological innovation system: The case of biofuels in The Netherlands. Technological Forecasting and Social Change, 76(8), 1003–1020.

    Article  Google Scholar 

  • Suurs, R. A. A., Hekkert, M. P., & Smits, R. E. H. M. (2009). Understanding the build-up of a technological innovation system around hydrogen and fuel cell technologies. International Journal of Hydrogen Energy, 34(24), 9639–9654.

    Article  Google Scholar 

  • Suurs, R. A. A., Hekkert, M. P., Kieboom, S., & Smits, R. E. H. M. (2010). Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel. Energy Policy, 38(1), 419–431.

    Article  Google Scholar 

  • Svenfelt, Å., Engström, R., & Svane, Ö. (2011). Decreasing energy use in buildings by 50% by 2050—A backcasting study using stakeholder groups. Technological Forecasting and Social Change.

    Google Scholar 

  • Thun, J.-H., Größler, A., & Milling, P. M. (2000). The diffusion of goods considering network externalities: A system dynamics-based approach. Paper presented at the 18th International Conference of the System Dynamics Society, Bergen.

    Google Scholar 

  • Urge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy, 36(2), 642–661.

    Article  Google Scholar 

  • Utterback, J. M. (1994). Mastering the dynamics of innovation: How companies can seize opportunities in the face of technological change. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • van der Heijden, J., & de Jong, J. (2009). Towards a better understanding of building regulation. Environment and Planning B: Planning and Design, 36(6), 1038–1052.

    Article  Google Scholar 

  • Weiss, M., Dittmar, L., Junginger, M., Patel, M. K., & Blok, K. (2009). Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands. Energy Policy, 37(8), 2962–2976.

    Article  Google Scholar 

  • Wejnert, B. (2002). Integrating models of diffusion of innovations: A conceptual framework. Annual Review of Sociology, 28(3), 297–326.

    Article  Google Scholar 

  • Wonglimpiyarat, J. (2005). Standard competition: Is collaborative strategy necessary in shaping the smart card market? Technological Forecasting and Social Change, 72(8), 1001–1010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grösser, S.N. (2013). Literature Review. In: Co-Evolution of Standards in Innovation Systems. Contributions to Management Science. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2858-0_2

Download citation

Publish with us

Policies and ethics