Skip to main content

Accelerated Lifetime Testing of Thermal Insulation Elements

  • Chapter
  • First Online:
Frontiers in Statistical Quality Control 10

Part of the book series: Frontiers in Statistical Quality Control ((FSQC,volume 10))

  • 1620 Accesses

Abstract

Thermal insulation materials play an important role in the area of energy technology. Thermal insulation elements (TIEs) are used in fields where high quality and high convenience insulation is required as e.g. in buildings. The TIE manufacturing sector is evolving, but not completely mature. Producers and users have an urgent demand for quality control techniques. Hitherto, quality control and service lifetime prediction for TIEs have mainly been considered from a physical viewpoint with strong emphasis on measurement issues. Rigorous statistical approaches are still missing. From a review of the physical models for TIE degradation over time we build a mixed nonlinear regression model of degradation as a function of time and ambient temperature. The model accounts for measurement-to-measurement and for unit-to-unit variation. We investigate inferential techniques for model parameter estimation and lifetime prediction, and we study the design of accelerated experiments on TIEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). Optimum experimental designs, with SAS. New York: Oxford University Press.

    Google Scholar 

  2. Bundesregierung der Bundesrepublik Deutschland (2007). Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung - EnEV) vom 24. Juli 2007. Bundesgesetzblatt Jahrgang 2007, Teil I, Nr. 34, pp. 1519–1563.

    Google Scholar 

  3. Bundesregierung der Bundesrepublik Deutschland (2009). Verordnung zur Änderung der Energieeinsparverordnung vom 29. April 2009. Bundesgesetzblatt Jahrgang 2009, Teil I, Nr. 23, pp. 954–989.

    Google Scholar 

  4. Caps, R., Hetfleisch, J., Rettelbach, T., & Fricke, J. (1996). Thermal conductivity of spun glass fibers as filler material for vacuum insulations. Thermal Conductivity, 23, 373–382.

    Google Scholar 

  5. Caps, R., Rettelbach, T., Ehrmanntraut, M., Korder, S., & Fricke, J. (1997). Development of vacuum super insulations with glass cover and powder filling. In R. S. Graves & R. R. Zarr (Eds.), Insulation materials: Testing and applications (Vol. 3. ASTM STP 1320) (pp. 270–282). West Conshohocken: American Society for Testing and Materials.

    Google Scholar 

  6. Christensen, R. (1996). Plane answers to complex questions: The theory of linear models (2nd ed.). New York/Berlin/Heidelberg: Springer.

    Google Scholar 

  7. Davidian, M., & Giltinian, D. M. (2003). Nonlinear models for repeated measurement data: An overview and update. Journal of Agricultural, Biological, and Environmental Statistics, 8(4), 387–419.

    Google Scholar 

  8. “Verordnung über energiesparenden Wärmeschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordnung – EnEV)” (2007, 2009).http://www.gesetze-im-internet.de/bundesrecht/enev_2007/gesamt.pdf.

  9. Göb, R., & Lurz, K. (2010). A mixed effects model for experiments on thermal insulation elements. Technical Reports of the Institute of Mathematics of the University of Würzburg, 2010.

    Google Scholar 

  10. Heinemann, U. (2008). Influence of water on the total heat transfer in evacuated insulations. International Journal of Thermophysics, 29(2), 735–749.

    Google Scholar 

  11. Heinemann, U., Caps, R., & Fricke, J. (1999). Characterization and optimization of filler materials for vacuum super insulations. Vuoto scienza e tecnologia, XXVIII(1–2), 43–46.

    Google Scholar 

  12. Kaganer, M.G. (1969). Thermal insulation in cryogenic engineering. Jerusalem: Israel program for scientific translations.

    Google Scholar 

  13. Kreith, F., & Bohn M. S. (2000). Principles of heat transfer. USA: Thomson Press.

    Google Scholar 

  14. Satterthwaite, F. E. (1941). Synthesis of variance. Psychometrika, 6, 309–316.

    Google Scholar 

  15. Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2(6), 110–114.

    Google Scholar 

  16. Welch, B. L. (1947). The generalization of “student’s” problem when several different population variances are involved. Biometrika, 34, 28–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Göb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Göb, R., Lurz, K., Heinemann, U. (2012). Accelerated Lifetime Testing of Thermal Insulation Elements. In: Lenz, HJ., Schmid, W., Wilrich, PT. (eds) Frontiers in Statistical Quality Control 10. Frontiers in Statistical Quality Control, vol 10. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2846-7_21

Download citation

Publish with us

Policies and ethics