Visualizing Geographical Information Through Tag Clouds

  • Davide De Chiara
  • Vincenzo Del Fatto
  • Monica Sebillo
Conference paper


In the last decade, the need to support decision makers in solving problems related to a territory and its phenomena has stimulated Geographic Information Visualization (GeoVis) researchers to propose highly interactive visualization tools able to both synthesize information from large datasets and perform complex analytical tasks. The goal of the present paper is to propose a GeoVis method based on a recent InfoVis technique, known as Tag Cloud, which combines tag clouds with advanced GeoVis techniques for visualizing geographic data and related spatio-temporal phenomena. The method elaborates a simplified map containing a georeferenced cloud of tags, placed where the associated information is appropriate and significant. As initial result a system prototype has been realized in order to obtain an overview of data distribution and classification. It is focused on data extraction and aggregation, and output visualization, and adopts various techniques to allow users to select data to visualize starting from a geographic dataset.


Font Size Cloud Generation Free Form Text Spatial Data Model Label Placement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Card, S., Mackinlay, J., Shneiderman, B. (1999) Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann, San Francisco, CA, USA.Google Scholar
  2. 2.
    Shneiderman, B., and Plaisant, C., (2010) Designing the User Interface: Strategies for Effective Human-Computer Interaction (Fifth Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.Google Scholar
  3. 3.
    Andrienko, G., Jern, M., Dykes, J., Fabrikant, S. I., Weaver, C. (2007) Geovisualization and synergies from InfoVis and Visual Analytics in Proceedings of the 11th International Conference Information Visualization IV 2007, IEEE Computer Society Press, pp. 485–488.Google Scholar
  4. 4.
    Viegas, F., and Wattenberg., M., (July 2008) TIMELINES: Tag clouds and the Case for Vernacular Visualization. Interactions 15, 4, 49–52.Google Scholar
  5. 5.
    Dorling., D., (1994) Cartograms for Human Geography. Visualization in Geographical Information Systems, pages 85–102.Google Scholar
  6. 6.
    Laurini, R., Milleret-Raffort, F., Lopez, K., (2006) A Primer of Geographic Databases Based on Chorems. Workshop on Reliability in Decentralized Distributed Systems (RDDS) LNCS 4278, pp. 1693–1702, 2006. © Springer-Verlag Berlin Heidelberg.Google Scholar
  7. 7.
    ASCE. (1994) The Glossary of the Mapping Sciences. New York, ASCE.Google Scholar
  8. 8.
    Worldmapper. Worldmapper website,
  9. 9.
    Brunet, R. (2004) La Corse, Région d’Europe. Mappemonde. 4: 1–16.Google Scholar
  10. 10.
    Brunet., R. (1986) La Carte-modele et les Choremes. Mappemonde, 4:2–6.Google Scholar
  11. 11.
    Del Fatto, V., Laurini, R., Lopez, K., Sebillo, M., Vitiello, G. (2008) A Chorem-based Method for Visualizing Evolutionary Scenarios. In Special Issue of the Information Visualization Journal, Vol.7, No.3, August 2008. Editors: G. Andrienko, N. Andrienko, J. Dykes, S. Fabrikant and M. Wachowicz.Google Scholar
  12. 12.
    De Chiara, D., Del Fatto, V., Laurini, R., Sebillo, M., Vitiello, G. (2011). A Chorem-based Approach for Visually Analyzing Spatial Data, in Journal of Visual Languages & Computing (JVLC) Volume 22, Issue 3, June 2011, Pages 173–193, Special Issue on Visual Analytics and Visual Semantics.Google Scholar
  13. 13.
    Viegas, F., B., Wattenberg, M., Feinberg. J. (2009). Participatory Visualization with Wordle. IEEE Transactions on Visualization and Computer Graphics 15, 6, 1137–1144.CrossRefGoogle Scholar
  14. 14.
    Tagul website:
  15. 15.
    Tagul API website:
  16. 16.
    Tagxedo website:
  17. 17.
    Jaffe, A., Naaman, M., Tassa, T., Davis, M. (2006). Generating Summaries and Visualization for Large Collections of Geo-referenced Photographs. In Proceedings of the 8th ACM international workshop on Multimedia information retrieval (MIR ’06). ACM, New York, NY, USA, 89–98.Google Scholar
  18. 18.
    Douglas, D., H., and Peucker, T., K., (1973) Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature. Canadian Cartographer, 10:112–122.Google Scholar
  19. 19.
    Ramer, U. (1972) An Iterative Procedure for the Polygonal Approximation of Plane Curves. Computer Graphics and Image Processing, 1(3):244–56.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Davide De Chiara
    • 1
  • Vincenzo Del Fatto
    • 1
  • Monica Sebillo
    • 1
  1. 1.University of SalernoSalernoItaly

Personalised recommendations