Technology Adoption by Elderly People – An Empirical Analysis of Adopters and Non-Adopters of Social Networking Sites



Due to new information and communication technologies, organizations can simplify the work of their employees, which is the largely overlooked perspective in IS research (Choudrie and Dwivedi 2006). In addition, households could integrate these technological innovations within their daily routine to handle ordinary or uncommon tasks within short periods of time. One essential innovation of the last years was the introduction of Social Network Sites (SNS), which can be defined as “online shared interactive spaces, in which a group of people use a repertoire of technological features (forums, newsgroups, messaging) to carry out a wide range of social interaction” (Khan and Jarvenpaa 2010; Jones et al 2004).


Elderly People Partial Little Square Social Network Site Technology Adoption Normative Belief 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajzen, I. “The theory of planned behavior,” Organizational Behavior and Human Decision Processes (50:2), 1991, pp. 179–211.CrossRefGoogle Scholar
  2. Ajzen, I., and Fishbein, M.. “Understanding attitudes and predicting social behavior”, Englewood Cliffs, NJ: Prentice-Hall, 1980.Google Scholar
  3. Azari, R., and Pick, J. B.. “Technology and society: socioeconomic influences on technological sectors for United States counties,” International Journal of Information Management (25:1), 2005, pp. 21–37.CrossRefGoogle Scholar
  4. Bagozzi, R. P. “The Role of Measurement in Theory Construction and Hypothesis Testing: Toward a Holistic Model,” in Conceptual and theoretical developments in marketing, Ferrell et al. (ed.), Chicago, Ill, 1979.Google Scholar
  5. Bagozzi, R. P., and Yi, Y. “On the Evaluation of Structural Equation Models,” Journal of the Academy of Marketing Science (16:1), 1998, pp. 74–94.CrossRefGoogle Scholar
  6. Bhattacherjee, A., and Hikmet, N. “Physicians’ resistance toward healthcare information technology: a theoretical model an empirical test,” European Journal of Information Systems (16:6), 2007, pp. 725–737.CrossRefGoogle Scholar
  7. Bhattacherjee, A., and Hikmet, N. “Physicians’ Resistance toward Healthcare Information Technologies: A Dual-Factor Model,” Hawaii International Conference on System Sciences, 2007.Google Scholar
  8. Bhattacherjee, A., and Sanford, C. “Influence Processes for Information Technology Acceptance: An Elaboration Likelihood Model,” MIS Quarterly (30:4), 2006, pp. 805–825.Google Scholar
  9. BitKom. 30 Millionen Deutsche sind Mitglieder in Communitys. Accessed 21 August 2010.
  10. Blackwell, A. F. “End-user Developers at Home,” Communications of the ACM (47:9), 2004, pp. 65–66.CrossRefGoogle Scholar
  11. Brown, S. A. “Household Technology Adoption, Use, and Impacts: Past, Present, and Future,” Information Systems Frontiers (10:4), 2008, pp. 397–402.CrossRefGoogle Scholar
  12. Brown, S. A., and Venkatesh, V. “Model of Adoption of Technology in Households: A Baseline Model Test and Extension Incorporating Household Life Cycle,” MIS Quarterly (29:3), 2005, pp. 399–426.Google Scholar
  13. Campell, D. T., and Fiske, D. W. “Convergent and discriminant validation by the multitraitmultimethod matrix,” Psychological Bulletin (56:2), 1959, pp. 81–105.CrossRefGoogle Scholar
  14. Carmines, E. G., and Zeller, R. A. Reliability and validity assessment, Newbury Park, Calif.: Sage Publ., 2008.Google Scholar
  15. Cenfetelli, R. T. “Inhibitors and Enablers as Dual Factor Concepts in Technology Usage,” Journal of the Association for Information Systems (5:11–12), 2004, pp. 472–492.Google Scholar
  16. Chin, W. W. “The Partial Least Squares Approach to Structural Equation Modeling,” in Modern methods for business research, G. A. Marcoulides (ed.), Mahwah, N.J., London: Lawrence Erlbaum, 1998.Google Scholar
  17. Chin, W. W., and Dibbern, J. “An Introduction to a Permutation Based Procedure for Multi-Group PLS Analysis: Results of Tests of Differences on Simulated Data and a Cross Cultural Analysis of the Sourcing of Information System Services Between Germany and the USA,” in Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Concepts, Methods and Applications, Vinzi et al. (ed.), s.l.: Springer-Verlag, 2010.Google Scholar
  18. Chin, W. W., and Newsted, P. R. “Structural Equation Modeling analysis with Small Samples Using Partial Least Squares,” in Statistical strategies for small sample research, R. H. Hoyle (ed.), Thousand Oaks, Calif.: Sage Publ, 2000.Google Scholar
  19. Chin W. W., Johnson, N.; Schwarz, A. “A fast form approach to measuring technology acceptance and other constructs,” MIS Quarterly (32:4), 2008, pp. 687–703.Google Scholar
  20. Choudrie, J., and Dwivedi, Y. K. “Investigating Factors Influencing Adoption of Broadband in the household,” Journal of Computer Information Systems (46:4), 2006, pp. 25–34.Google Scholar
  21. Choudrie, J., and Lee, H. J. “Broadband development in South Korea: institutional and cultural factors,” European Journal of Information Systems (13:2), 2004, pp. 103–114.CrossRefGoogle Scholar
  22. COMPASS HEADING. Nutzerzahlen Sozialer Netzwerke Januar 2010. Accessed 21 August 2010.
  23. Correa, T.; Hinsley, A. W.; de Zúniga, H. G. “Who interacts on the Web?: The intersection of users’ personality and social media use,” Computers in Human Behavior (26), 2010, pp. 247–253.CrossRefGoogle Scholar
  24. Dewan, S., and Riggins, F. J. “The Digital Divide: Current and Future Research Directions,” Journal of the Association for Information Systems (6:13), 2005.Google Scholar
  25. Dwivedi, Y. K.; Choudrie, J.; Brinkman, W.-P. “Development of a survey instrument to examine consumer adoption of broadband,” Industrial Management & Data Systems (106:5), 2006, pp. 700–718.CrossRefGoogle Scholar
  26. Eckhardt, A., Laumer S., Weitzel, T. “Who influences whom? Analyzing workplace referents’ social influence on IT adoption and non-adoption,” Journal of Information Technology (24:1), 2009, pp. 11–24.CrossRefGoogle Scholar
  27. Ellison, N.; Steinfield, C.; Lampe, C. A. “The Benefits of Facebook "Friends:" Social Capital and College Students’ Use of Online Social Network Sites,” Journal of Computer-Mediated Communication (12:4), 2007, pp. 1143–1168.CrossRefGoogle Scholar
  28. Enns, H. G., Huff, S. L., Higgins, C. A. “CIO Lateral Influence Behaviors: Gaining Peers’ Commitment to Strategic Information Systems,” MIS Quarterly (27:1), 2003, pp. 155–176.Google Scholar
  29. Facebook. Statistics. Accessed 1 July 2010.
  30. Ferrell, O. C., Brown, S. W., Lamb, C. W. (ed.). Conceptual and theoretical developments in marketing, Chicago, Ill, 1979.Google Scholar
  31. Fishbein, M., and Ajzen, I. “Belief, attitude, intention and behavior. An introduction to theory and research,” Reading, Mass 1975.Google Scholar
  32. Fornell, C., and Larcker, D. F. “Evaluating Structural equation models with unobservable variables and measurement error,” Journal of Marketing Research (18:1), 1981, pp. 39–50.CrossRefGoogle Scholar
  33. Gallivan M.J., and Srite, M. “Information Technology and Culture: Identifying Fragmented and Holistic Perspectives of Culture,” Information & Organization (15:2), 2005, pp. 295–338.CrossRefGoogle Scholar
  34. Hargittai, E. Second-Level Digital Divide: Differences in People’s Online Skills. Accessed 1 July 2010.
  35. Henseler, J., Ringle, C. M., Sinkovics Rudolf R. “The use of partial least squares path modeling in international marketing,” Advances in International Marketing (20), 2009, pp. 277–319.CrossRefGoogle Scholar
  36. Hirschheim, R., and Newman, M. “Information Systems and User Resistance: Theory and Practice,” The Computer Journal (31:5), 1988, pp. 398–408.CrossRefGoogle Scholar
  37. Holznagel, B. “Frequenzeffizienz und Rundfunkspektrum,” MMR (4), 2008, pp. 207–215.Google Scholar
  38. Hoyle, R. H. (ed.) Statistical strategies for small sample research, Thousand Oaks, Calif.: Sage Publ., 2000.Google Scholar
  39. Hulland, J. S. “Use of partial least squares (PLS) in strategic management research: A review of four recent studies,” Strategic Management Journal (20:2), 1999, pp. 195–204.CrossRefGoogle Scholar
  40. Hutter, T. Facebook Demographische Zahlen der Länder > 1 Mio., 2010.
  41. Jiang, J. J., Muhanna, W. A., Klein, G. “User resistance and strategies for promoting acceptance across system types,” Information and Management (37:3), 2000, pp. 25–36.CrossRefGoogle Scholar
  42. Johansen, R., and Swigart, R. “Upsizing the individual in the downsized organization. Managing in the wake of reengineering, globalization, and overwhelming technological change,” Reading, Mass 1996.Google Scholar
  43. Jones, Q., Ravid, G., Rafaeli, S. “Information Overload and the Message Dynamics of Online Interaction Spaces: A theoretical model and empirical exploration,” Information Systems Research (15:2), 2004, pp. 194–210.CrossRefGoogle Scholar
  44. Joos, J. G. “Social media: New frontiers in hiring and recruiting,” Employment Relations Today (35:1), 2008, pp. 51–59.CrossRefGoogle Scholar
  45. Khan, Z., and Jarvenpaa, S. L. “Exploring temporal coordination of events with Facebook. com.,” Journal of Information Technology (25:2), 2010, pp. 137–151.CrossRefGoogle Scholar
  46. Kim, H. W., and Kankanhalli, A. “Investigating User Resistance to Information Systems Implementation: A Status Quo Bias Perspective,” MIS Quarterly (33:3), 2009, pp. 567–582.Google Scholar
  47. Kubicek, H., and Welling, S. “Vor einer digitalen Spaltung in Deutschland? Annäherung an ein verdecktes Problem von wirtschafts- und gesellschaftspolitischer Brisanz,” Medien und Kommunikationswissenschaft (48:4), 2000, pp. 497–517.Google Scholar
  48. Lapointe, L., and Rivard, S. “A Multilevel Model of Resistance to Information Technology Implementation,” MIS Quarterly (29:3), 2005, pp. 461–491.Google Scholar
  49. Laumer S., Maier C., Eckhardt E. “Towards an Understanding of an Individual’s Resistance to Use an IS - Empirical Examinations and Directions for Future Research,” DIGIT 2009 PROCEEDINGS 2009.Google Scholar
  50. Laumer S., Maier C., Eckhardt E. “Why do they resist? - An empirical analysis of an individual’s personality trait resistance regarding the adoption of new information systems,” Pretoria, South Africa, 2010.Google Scholar
  51. Lewin, K. “Frontiers in Group Dynamics: Concept, Method and Reality in Social Science; Social Equilibria and Social Change,” Human Relations (1:1), 1947, pp. 5–41.CrossRefGoogle Scholar
  52. Lewis, K., Kaufman, J., Gonzales, M., Wimmer, A., Christakis, N. “Taste, Ties, and Time: A new social network dataset using,” Social Networks (30:4), 2008, pp. 330–342.CrossRefGoogle Scholar
  53. Lewis, K., Kaufman, J., Christakis, N. “The Taste for Privacy: An Analysis of College Student Privacy Settings in an Online Social Network,” Journal of Computer-Mediated Communication (14:1), 2008, pp. 79–100.CrossRefGoogle Scholar
  54. Luftman, J., Kempaiah, R., Rigoni E. H. “Key Issues for IT Executives 2008,” MIS Quarterly Executive (8:3), 2009, pp. 151–159.Google Scholar
  55. Marcoulides, G. A. (ed.) Modern methods for business research, Mahwah, N.J., London: Lawrence Erlbaum, 1998.Google Scholar
  56. Markus, M. L. “Power, Politics, and MIS Implementation,” Communications of the ACM (26:6), 1983, pp. 430–444.CrossRefGoogle Scholar
  57. Mayer, A., and Puller, S. “The Old Boy (and Girl) Network: Social network formation on university campuses,” Journal of Public Economics (92:1–2), 2008, pp. 329–347.CrossRefGoogle Scholar
  58. Mertens, P. “Fehlschläge bei IT-Großprojekten der öffentlichen Verwaltung - ein Beitrag zur Misserfolgsforschung in der Wirtschaftsinformatik,” Working Paper, 2008.Google Scholar
  59. Moore, G. A. Crossing the chasm. Marketing and selling high-tech products to mainstream customers, New York: HarperBusiness, 1999.Google Scholar
  60. Norman, D. A. “Things that make us smart. Defending human attributes in the age of the machine,” Reading, Mass 1999.Google Scholar
  61. Oreg, S. “Resistance to Change: Developing an Individual Differences Measure,” Journal of Applied Psychology (88:4), 2003, pp. 680–693.CrossRefGoogle Scholar
  62. Pak, R., Price, M., Thatcher, J. B.. “Age-Sensitive Design of Online Health Information: Comparative Usability Study,” Journal of Medical Internet Research (11:4), 2009.Google Scholar
  63. Phang, C. W., Kankanhalli, A., Sabherwal, R.. “Usability and Sociability in Online Communities,” Journal of the Association for Information Systems (10:10), 2009, pp. 721–747.Google Scholar
  64. Raacke, J., and Bonds-Raacke, J. “MySpace and Facebook: Applying the Uses and Gratifications Theory to Exploring Friend-Networking Sites,” CyperPsychology & Behavior (11:2), 2008, pp. 169–174.CrossRefGoogle Scholar
  65. Ringle et al. “SmartPLS, 2.0 (beta),” 2005.Google Scholar
  66. Rosen, P., and Sherman, P. “Hedonic Information Systems: Acceptance of Social Networking Websites,” AMCIS 2006 Proceedings, 2006.Google Scholar
  67. Ross, C., Orr, E. S., Sisic, M., Arseneault, J. M., Simmering, M. G., Orr, R. R. “Personality and motivations associated with Facebook use,” Computers in Human Behavior (25:2), 2009, pp. 578–586.CrossRefGoogle Scholar
  68. studiVZ. Data and Facts. Accessed 14 July 2010.
  69. Subrahmanyam, K., Reich, S. M., Waechter, N., Espinoza, G. “Online and offline social networks: Use of social networking sites by emerging adults,” Journal of Applied Developmental Psychology (29:6), 2008, pp. 420–433.CrossRefGoogle Scholar
  70. TNS Infratest. “(N)Onliner Atlas: Eine Topographie des digitalen Grabens durch Deutschland: Nutzung und Nichtnutzung des Internets, Strukturen und regionale Verteilung,” TNS Infratest Juni 2009.Google Scholar
  71. Valenzuela, S., Park, N., Kee, K. F. “Is there social capital in a social network site? Facebook use, and college students’ life satisfaction, trust, and participation,” Journal of Computer-Mediated Communication (14:4), 2009, pp. 875–901.CrossRefGoogle Scholar
  72. Venkatesh, A. “Digital home technologies and transformation of households,” Information Systems Frontiers (10:4), 2008, pp. 391–395.CrossRefGoogle Scholar
  73. Venkatesh, V., and Brown, S. A. “A Longitudinal Investigation of Personal Computers in Homes: Adoption Determinants and Emerging Challenges,” MIS Quarterly (25:1), 2001, pp. 71–102.CrossRefGoogle Scholar
  74. Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D. “User Acceptance of Information Technology: Toward a unified View,” MIS Quarterly (27:3), 2003, pp. 425–478.Google Scholar
  75. Vinzi, V., Chin, W. W., Henseler, J., Wang, H. (ed.). Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Concepts, Methods and Applications, s.l.: Springer-Verlag, 2010.Google Scholar
  76. Walther, J. B., Van der Heide, B., Kim, S.-Y., Westerman, D., Tong, S. T. “The Role of Friends’ Appearance and Behavior on Evaluations of Individuals on Facebook: Are We Known by the Company We Keep?,” Human Communication Research (34:1), 2008, pp. 28–49.CrossRefGoogle Scholar
  77. Wege ins Netz. Der Wettbewerb für mehr digitale Kompetenz.,did=339642.html Accessed 21 August 2010.
  78. Weitzel T., Eckhardt, A., Laumer S. “A Framework for Recruiting IT Talent: Lessons from Siemens,” MIS Quarterly Executive (8:4), 2009, pp. 175–189.Google Scholar
  79. Wiener, L. R. “Digital woes. Why we should not depend on software,” Reading, Mass 1993.Google Scholar
  80. Williams, M. D., Dwivedi, Y. K., Lal, B., Schwarz, A. “Contemporary trends and issues in IT adoption and diffusion research,” Journal of Information Technology (24:1), 1990, pp. 1–10.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Maier
    • 1
  • Sven Laumer
    • 1
  • Andreas Eckhardt
    • 2
  1. 1.Centre of Human Resources Information SystemsOtto-Friedrich University BambergBambergGermany
  2. 2.Centre of Human Resources Information SystemsGoethe University Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations