Problem Analysis for Situational Artefact Construction in Information Systems

  • Robert Winter


The goal of Design Science Research in Information Systems is to construct artefacts that are useful solutions to certain classes of (Information System) design problems in organisations. An essential part of Design Science Research in Information Systems is therefore to delineate the addressed design problem class, to illustrate its importance and to understand the design problems within this class in sufficient detail so that solution artefacts can be purposefully and systematically constructed. Although most authors discuss the relevance of a design problem class, its boundaries are often not delineated systematically, and the issue of genericity vs. utility is not rigorously addressed. We therefore propose a field study-based technique which overcomes this deficit by not only clearly specifying a design problem class, but also by identifying relevant design situations within this class – an important prerequisite for situational artefact construction. The proposed technique is demonstrated using a situational artefact construction exemplar. In our discussion, we identify the need for additional research to incorporate economical considerations.


Design Problem Information System Contingency Factor Enterprise Architecture Activity Share 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    March, S.T. and Smith, G.F.(1995). Design and Natural Science Research on Information Technology. Decision Support Systems, 15, 251-266.CrossRefGoogle Scholar
  2. 2.
    Hevner, A.R., March, S.T., Park, J., and Ram, S.(2004).Design Science in Information Systems Research. MIS Quarterly, 28, 75-105.Google Scholar
  3. 3.
    Baskerville, R.L., Pries-Heje, J., and Venable, J.(2009).Soft design science methodology. In: Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology (DESRIST 2009). ACM, New York.Google Scholar
  4. 4.
    Cole, R., Purao, S., Rossi, M., and Sein, M.(2005). Being Proactive: Where Action Research Meets Design Research. In: Avison, D.E., Galletta, D.F. (eds.): Proceedings of the International Conference on Information Systems. Association for Information Systems.Google Scholar
  5. 5.
    Eekels, J., and Roozenburg, N.F.M.(1991). A methodological comparison of the structures of scientific research and engineering design: their similarities and differences. Design Studies, 121, 197-203.CrossRefGoogle Scholar
  6. 6.
    Offermann, P., Levina, O., Schönherr, and M., Bub, U.(2009). Outline of a design science research process. Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology (DESRIST 2009). ACM, New York.Google Scholar
  7. 7.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., and Chatterjee, S.(2007). A Design Science Research Methodology for Information Systems Research. Journal of Management Information Systems,24, 45-77.CrossRefGoogle Scholar
  8. 8.
    Takeda, H., Veerkamp, P., Tomiyama, T., and Yoshikawa, H.(1990). Modeling design processes. AI Magazine, 11, 37-48.Google Scholar
  9. 9.
    Vaishnavi, V.K., Vandenberg, A., Zhang, Y., and Duraisamy, S.(2009). Towards design principles for effective context- and perspective-based web mining. DESRIST '09: Proceedings of the 4th International Conference on Design Science Research in Google Scholar
  10. 10.
    Information Systems and Technology. ACM, New York.Google Scholar
  11. 11.
    Wieringa, R.J.(2009). Design Science as Nested Problem Solving. Proceedings of the 4th International Conference on Design Science Research in Information Systems and Technology. Association for Computing Machinery,12.Google Scholar
  12. 12.
    Vaishnavi, V.K.,and Kuechler, W.(2004). Design Research in Information Systems. Association for Information Systems.Google Scholar
  13. 13.
    Becker, J., Delfmann, P., and Knackstedt, R.(2007). Adaptive Reference Modeling: Integrating Configurative and Generic Adaptation Techniques for Information Models. In: Becker, J., Delfmann, P. (eds.): Reference Modeling. Physica, Heidelberg, 27-58.CrossRefGoogle Scholar
  14. 14.
    Becker, J., Delfmann, P., Knackstedt, R., and Kuropka, D.(2002). Konfigurative Referenzmodellierung. In: Becker, J., Knackstedt, R. (eds.): Wissensmanagement mit Referenzmodellen. Konzepte für die Anwendungssystem- und Organisationsgestaltung. Physica, Heidelberg, 25-144Google Scholar
  15. 15.
    Bucher, T., Klesse, M., Kurpjuweit, S., and Winter, R.(2007). Situational Method Engineering – On the Differentiation of “Context” and “Project Type”. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.): Situational Method Engineering – Google Scholar
  16. 16.
    Fundamentals and Experiences, Vol. 244. Springer, Boston, 33-48.Google Scholar
  17. 17.
    Gregor, S.,and Jones, D.(2007). The Anatomy of a Design Theory. Journal of the Association for Information Systems, 8, 312-335.Google Scholar
  18. 18.
    Fiedler, F.E.(1964). A Contingency Model of Leadership Effectiveness. Advances in Experimental Social Psychology, 1,149-190.CrossRefGoogle Scholar
  19. 19.
    Donaldson, L.(2001). The Contingency Theory of Organizations. Sage, Thousand Oaks.Google Scholar
  20. 20.
    Graubner, M.(2006). Task, firm size, and organizational structure in management consulting. An empirical analysis from a contingency perspective. DUV, Wiesbaden.Google Scholar
  21. 21.
    Pfeffer, J.(1997). New Directions for Organization Theory: Problems and Prospects. Oxford University Press, New York.Google Scholar
  22. 22.
    Bucher, T., Klesse, M.(2006). Contextual Method Engineering. University of St. Gallen, Institute of Information Management, St. Gallen.Google Scholar
  23. 23.
    Leist, S.(2004). Methoden zur Unternehmensmodellierung – Vergleich, Anwendungen und Diskussionen der Integrationspotenziale. Institut für Wirtschaftsinformatik Universität St. Gallen, St. Gallen.Google Scholar
  24. 24.
    Baumöl, U.(2005). Strategic Agility through Situational Method Construction. In: Reichwald, R., Huff, A.S. (eds.): Proceedings of the European Academy of Management Annual Conference 2005.Google Scholar
  25. 25.
    Klesse, M., and Winter, R. (2007). Organizational Forms of Data Warehousing: An Explorative Analysis. Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS-40). IEEE Computer Society, Los Alamitos.Google Scholar
  26. 26.
    Aier, S., Riege, C., and Winter, R.(2008). Classification of Enterprise Architecture Scenarios – An Exploratory Analysis. Enterprise Modelling And Information Systems Architectures, 3, 14–23.Google Scholar
  27. 27.
    Bucher, T., and Winter, R.(2009). Taxonomy of Business Process Management Approaches: An Empirical Foundation for the Engineering of Situational Methods to Support BPM. In: vom Brocke, J., Rosemann, M. (eds.): Handbook on Business Process Google Scholar
  28. 28.
    Management. Springer.Google Scholar
  29. 29.
    Lahrmann, G., and Stroh, F.(2009). Towards a Classification of Information Logistics Scenarios – An Exploratory Analysis. In: Sprague, R.H. (ed.): Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS-42). IEEE Computer Society, Los Alamitos.Google Scholar
  30. 30.
    Thompson, B.(2004). Exploratory and Confirmatory Factor Analysis: Understanding Concepts and Applications. American Psychological Association, Washington, DC.CrossRefGoogle Scholar
  31. 31.
    Dziuban, C.D., and Shirkey, E.C.(1974). When is a Correlation Matrix Appropriate for Factor Analysis?. Psychological Bulletin, 81, 358-361.CrossRefGoogle Scholar
  32. 32.
    Kaiser, H.F.(1970). An second-generation Little Jiffy. Psychometrika, 35, 401-415.CrossRefGoogle Scholar
  33. 33.
    Härdle,W., and Simar, L.(2003). Applied Multivariate Statistical Analysis. Springer, Berlin.Google Scholar
  34. 34.
    Kaiser, H.F., and Dickman, K.W.(1959). Analytic Determination of Common Factors. American Psychological Reports, 14, 425-430.Google Scholar
  35. 35.
    Weitzman, M.L.(1992). On Diversity. The Quarterly Journal Of Econimics, 107, 363-405.CrossRefGoogle Scholar
  36. 36.
    Weitzman, M.L.(1993). What to Preserve? An Application of Diversity Theory to Crane Conservation. The Quarterly Journal Of Econimics, 108, 157-183.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.University of St. GallenSt. GallenSwitzerland

Personalised recommendations