Skip to main content

Spatial Epidemiological Applications in Public Health Research: Examples from the Megacity of Dhaka

  • Chapter
  • First Online:

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Public health researchers are increasingly shifting their focus from models of disease epidemiology that focus exclusively on individual risk factors to models that also consider the complex and important effects of the socio-physical environment (Geanuracos et al. 2007). The application of spatial analysis in the context of epidemiological surveillance and research has increased exponentially (Pfeiffer et al. 2009). Geographic information systems (GIS), global positioning systems (GPS) and remote sensing (RS) have been increasingly used in public health research since the 1990s (Kaiser et al. 2003). At the same time, geographers have started to extend their collaborations with public health researchers leading to the still young discipline of health geography that uses geographical concepts and techniques to investigate health-related topics (Meade and Earickson 2005; Gatrell and Elliott 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We refer to health geography although there is a scientific debate on the naming of this discipline. Please confer e.g., Kearns (1993), Mayer and Meade (1994), and Kearns and Moon (2002) for arguments whether to name it medical geography or the geographies of health.

  2. 2.

    A data model is an abstract model describing how data is structured. Data models are used to integrate different kinds of information, putting them into a thematic, semantic or – in the case of spatial data – in a geometric-topological structure.

  3. 3.

    A relation R is in the first normal form (1NF) if all underlying domains contain atomic values only. A relation R is in the second normal form (2NF) if it is in 1NF and every non-key attribute is fully dependent on the primary key. A relation R is in the third normal form (3NF) if it is in 2NF and every non-key attribute is non-transitively dependent on the primary key. However, two more NF exist but are rarely implemented as the data structure then often ends up in overly flat tables.

  4. 4.

    Heterogeneity, the violation of homogeneity, happens if the spread of the data is not the same at each X value, and this can be checked by comparing the spread of the residuals for the different X values (Zuur 2009).

References

  • Alberti, M. (2009). Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems. New York

    Google Scholar 

  • Anselin, L. (1995). “Local Indicators of Spatial Association – LISA.” Geographical Analysis 27(2): 93–115

    Article  Google Scholar 

  • Anselin, L., I. Syabri, et al. (2002). Visualizing multivariate spatial correlation with dynamically linked windows. New Tools for Spatial Data Analysis: Proceedings of the Specialist Meeting, Santa Barbara, Center for Spatially Integrated Social Science (CSISS), University of California

    Google Scholar 

  • Barton, D. E., F. N. David, et al. (1965). “A criterion for testing contagion in time and space.” Annals of Human Genetics 29: 97–103

    Article  Google Scholar 

  • Besag, J. and J. Newell (1991). “The Detection of Clusters in Rare Diseases.” Journal of the Royal Statistical Society. Series A (Statistics in Society) 154(1): 143–155

    Article  Google Scholar 

  • Bithel, J. F. (1995). “The choice of test for detecting a raised disease risk near a point source.” Statistics in Medicine 14: 2309–2322

    Article  Google Scholar 

  • Bithel, J. F., S. J. Dutton, et al. (1994). “Distribution of childhood Leukemias and non-Hodgkin's lymphomas near nuclear installations in England and Wales.” British Medical Journal 309: 501–505

    Article  Google Scholar 

  • Bivand, R. S., E. J. Pebesma, et al. (2008). Applied Spatial Data Analysis with R. Berlin, New York, Springer

    Google Scholar 

  • Boulos, M. N. K. (2004). “Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom.” International Journal of Health Geographics 3(1): 1

    Article  PubMed  Google Scholar 

  • Boulos, M. N. K., A. V. Roudsari, et al. (2001). “Health Geomatics: An Enabling Suite of Technologies in Health and Healthcare.” Journal of Biomedical Informatics 34: 195–219

    Article  PubMed  CAS  Google Scholar 

  • Cliff, A. D. and J. K. Ord (1973). Spatial Autocorrelation. London

    Google Scholar 

  • Cliff, A. D. and J. K. Ord (1981). Spatial Processes: Models and Applications. London

    Google Scholar 

  • Cromley, E. K. (2003). “GIS and Disease.” Annual Review of Public Health 24(1): 7–24

    Article  PubMed  Google Scholar 

  • Cromley, E. K. and S. L. McLafferty (2002). GIS and Public Health. New York

    Google Scholar 

  • Cuzick, J. and R. Edwards (1990). “Spatial Clustering for Inhomogeneous Populations.” Journal of the Royal Statistical Society. Series B (Methodological) 52(1): 73–104

    Google Scholar 

  • Diggle, P. (1990). “A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point.” Journal of the Royal Statistical Society Series A 153: 349–362

    Google Scholar 

  • Diggle, P., A. G. Chetwynd, et al. (1995). “Second-order analysis of space-time clustering.” Statistical Methods in Medical Research 4: 124–136

    Article  PubMed  CAS  Google Scholar 

  • Dormann, C., F., J. McPherson, M., et al. (2007). “Methods to account for spatial autocorrelation in the analysis of species distributional data: a review.” Ecography 30(5): 609–628

    Article  Google Scholar 

  • Edelmann, L. S. (2007). “Using geographic information systems in injury research.” Journal of Nursing Scholarship 39(4): 306–311

    Article  Google Scholar 

  • Ederer, F., M. H. Myers, et al. (1964). “A statistical problem in space and time: Do Leukemia cases come in clusters?” Biometrics 20: 626–638

    Article  Google Scholar 

  • Elliott, P., J. C. Wakefield, et al., Eds. (2006). Spatial epidemiology: methods and applications. Oxford, Oxford University Press

    Google Scholar 

  • ESRI (Environmental Systems Research Institute) (2009). ArcGIS 9.3.1. Redlands, USA, www.esri.com

  • ESRI (Environmental Systems Research Institute) (2011). ArcGIS 10. In. Redlands, USA: www.esri.com

  • Fortin, M.-J. and M. Dale (2006). Spatial Analysis. A Guide for Ecologists. Cambridge

    Google Scholar 

  • FOSSGIS e.V. (2010). “FreeGIS.org.” Retrieved April, 8., 2010, from http://www.freegis.org/

  • Galea, S., N. Freudenberg, et al. (2005). “Cities and population health.” Social Science & Medicine 60(5): 1017–1033

    Article  Google Scholar 

  • Galea, S., Freudenberg, N., & Vlahov, D. (2005). Cities and population health. Social Science & Medicine, 60, 1017–1033

    Google Scholar 

  • Gatrell, A. C. and S. J. Elliott (2009). Geographies of Health: An Introduction. Oxford

    Google Scholar 

  • Geanuracos, C. G., D. D. Cunningham, et al. (2007). “Use of Geographic Information Systems for Planning HIV Prevention Interventions for High-Risk Youths.” American Journal of Public Health 97(11): 1974–1981

    Article  PubMed  Google Scholar 

  • Geary, R. C. (1954). “The contiguity ratio and statistical mapping.” The Incorporated Statistician 5: 115–145

    Article  Google Scholar 

  • Getis, A. and J. K. Ord (1992). “The Analysis of Spatial Association by Use of Distance Statistics.” Geographical Analysis 24: 189–206

    Article  Google Scholar 

  • Griffiths, P., P. Hostert, et al. (2010). “Mapping megacity growth with multi-sensor data.” Remote Sensing of Environment 114(2): 426–439

    Article  Google Scholar 

  • Gruebner, O., Khan, M.M., Lautenbach, S., Muller, D., Kramer, A., Lakes, T., & Hostert, P. (2011). A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka. International Journal of Health Geographics, 10, 36

    Google Scholar 

  • Hostert, P. and O. Gruebner (2010). Geographic Information Systems. Modern infectious disease epidemiology - Concepts, methods, mathematical models, public health. A. Krämer, M. Kretzschmar and K. Krickeberg. Berlin, Springer: 177192

    Google Scholar 

  • Jacquez, G. (1996). “A k-nearest neighbour test for space-time interaction.” Statistics in Medicine 15: 1935–1949

    Article  PubMed  CAS  Google Scholar 

  • Kaiser, R., P. B. Spiegel, et al. (2003). “The Application of Geographic Information Systems and Global Positioning Systems in Humanitarian Emergencies: Lessons Learned, Programme Implications and Future Research.” Disasters 27(2): 127–140

    Article  PubMed  Google Scholar 

  • Kawachi, I., & Berkman, L.F. (Eds.) (2003). Neighborhoods and health. Oxford, New York: Oxford University Press

    Google Scholar 

  • Kearns, R.A. (1993). Place and Health: Towards a Reformed Medical Geography. The Professional Geographer, 45, 139–147

    Google Scholar 

  • Kearns, R., & Moon, G. (2002). From medical to health geography: novelty, place and theory after a decade of change. Progress in Human Geography, 26, 605–625

    Google Scholar 

  • Kulldorff, M. (1997). “A spatial scan statistic.” Communications in Statistics - Theory and Methods 26(6): 1481–1496

    Article  Google Scholar 

  • Kulldorff, M. (2001). “Prospective time periodic geographical disease surveillance using a scan statistic.” Journal of the Royal Statistical Society Series A 164: 61–72

    Google Scholar 

  • Lawson, A. (1993). “On the analysis of mortality events associated with a prespecified fixed point.” Journal of the Royal Statistical Society Series A 156: 363–377

    CAS  Google Scholar 

  • Lawson, A. (2009). Bayesian disease mapping: hierarchical modeling in spatial epidemiology, CRC Press

    Google Scholar 

  • Lawson, A., W. Browne, et al. (2003). Disease mapping with WinBUGS and MLwiN, J. Wiley

    Google Scholar 

  • Likert, R. (1932). “A Technique for the Measurement of Attitudes.” Archives of Psychology 140

    Google Scholar 

  • Lillesand, T. M., R. W. Kiefer, et al. (2003). Remote Sensing and Image Interpretation. New York, Wiley

    Google Scholar 

  • Longley, P. A., M. F. Goodchild, et al., Eds. (2007). Geographic Information Systems and Science. New York, Wiley & Sons

    Google Scholar 

  • Maguire, D., M. Batty, et al., Eds. (2005). GIS, Spatial Analysis, and Modeling. Redlands, California, ESRI Press

    Google Scholar 

  • Mantel, N. (1967). “The detection of disease clustering and a generalized regression approach.” Cancer Research 27: 209–220

    PubMed  CAS  Google Scholar 

  • Mayer, J.D., & Meade, M.S. (1994). A Reformed Medical Geography Reconsidered. The Professional Geographer, 46, 103–106

    Google Scholar 

  • Meade, M. S. and R. J. Earickson (2005). Medical Geography. New York

    Google Scholar 

  • Moran, P. A. P. (1948). “The interpretation of statistical maps.” Journal of the Royal Statistical Society Series B 10: 243–251

    Google Scholar 

  • Moran, P. A. P. (1950). “Notes on Continuous Stochastic Phenomena.” Biometrika 37(1–2): 17–23

    PubMed  CAS  Google Scholar 

  • Openshaw, S., M. Charlton, et al. (1987). “A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets.” International journal of geographical information systems 1(4): 335–358

    Article  Google Scholar 

  • Pfeiffer, D. U., T. P. Robinson, et al. (2009). Spatial Analysis in Epidemiology. New York, Oxford University Press

    Google Scholar 

  • Richards, J. A. and X. Jia (2005). Remote Sensing Digital Image Analysis. Berlin, Germany, Springer

    Google Scholar 

  • Ricketts, T. C. (2003). “Geographic information systems and Public health.” Annual Review of Public Health 24: 1–6

    Article  PubMed  Google Scholar 

  • Ripley, B. D. (1977). “Modelling spatial patterns (with discussion).” Journal of the Royal Statistical Society Series B 39: 172–212

    Google Scholar 

  • Robertson, C., Nelson, T.A., MacNab, Y.C., & Lawson, A.B. (2010). Review of methods for space-time disease surveillance. Spatial and Spatio-temporal Epidemiology, 1, 105–116

    Google Scholar 

  • Rogerson, P. A. (1997). “Surveillance systems for monitoring the development of spatial patterns.” Statistics in Medicine 16: 2081–2093

    Article  PubMed  CAS  Google Scholar 

  • Ruankaew, N. (2005). “GIS and epidemiology.” Journal of the Medical Association of Thailand 88(11): 1735–1738

    PubMed  Google Scholar 

  • Rushton, G. and P. Lolonis (1996). “Exploratory spatial analysis of birth defect rates in an urban population.” Statistics in Medicine 15: 717–726

    Article  PubMed  CAS  Google Scholar 

  • Stone, R. A. (1988). “Investigations of excess environmental risks around putative sources: statistical problems and a proposed test.” Statistics in Medicine 7: 649–660

    Article  PubMed  CAS  Google Scholar 

  • Tango, T. (1995). “A class of tests for detecting 'general' and 'focused' clustering of rare diseases.” Statistics in Medicine 14: 2323–2334

    Article  PubMed  CAS  Google Scholar 

  • Tobler, W. R. (1970). “A computer model simulation of urban growth in the Detroit region.” Economic Geography 46(2): 234–240

    Article  Google Scholar 

  • Turnbull, B. W., E. Iwano, et al. (1990). “Monitoring for clusters of disease: applications for leukemia incidence in upstate New York.” American Journal of Epidemiology 132: 136–143

    Google Scholar 

  • Waller, L. and C. Gotway (2004). Applied Spatial Statistics for Public Health Data. Hoboken, New Jersey

    Google Scholar 

  • Waller, L., B. W. Turnbull, et al. (1992). “Chronic disease surveillance and testing of clustering of disease and exposure: Application to Leukemia incidence and TCE-contaminated dumpsites in upstate New York.” Environmetrics 3: 281–300

    Article  Google Scholar 

  • Whittemore, A. S., N. Friend, et al. (1987). “A test to detect clusters of disease.” Biometrika 74(3): 631–635

    Article  Google Scholar 

  • WHO (World Health Organization) Collaborating Centre for Mental Health Frederiksborg General Hospital. (2010). “WHO-Five Well-being Index (WHO-5).” Retrieved 27.04.2010, from http://www.who-5.org/

  • Zuur, A. F., E. N. Ieno, et al. (2009). Mixed Effects Models and Extensions in Ecology with R. New York, Springer

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the German Research Foundation (DFG) for funding the project Dhaka INNOVATE under the priority programme 1233 “Megacities-Megachallenges”. We further thank Tobia Lakes, Sven Lautenbach and Daniel Müller for thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gruebner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gruebner, O., Khan, M.M.H., Hostert, P. (2011). Spatial Epidemiological Applications in Public Health Research: Examples from the Megacity of Dhaka. In: Krämer, A., Khan, M., Kraas, F. (eds) Health in Megacities and Urban Areas. Contributions to Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2733-0_16

Download citation

Publish with us

Policies and ethics