A New Approach to Link Satellite Observations with Human Health by Aircraft Measurements

  • Britta Mey
  • Manfred Wendisch
  • Heiko J. Jahn
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Anthropogenic ambient aerosol pollution is a worldwide obvious phenomenon and causes adverse health effects. Particularly large cities are affected. According to the World Health Organization, about 0.8 million deaths can be attributed to urban particulate air pollution globally (WHO 2002). Mostly resulting from combustion processes, aerosol particles (particulate matter, PM) can cause or exacerbate respiratory, cardiovascular diseases as well as lung cancer (Pope et al. 2002; Pope and Dockery 2006; Schulz et al. 2005). The health effects of aerosol particles are, among others, determined by particle size, their chemical composition, duration and degree of exposure and number concentration.


Aerosol Particle Aerosol Optical Depth Public Health Research Cascade Impactor Coarse Mode 



We thank the German Research Foundation (DFG) for the funding within the priority program SPP 1233 Megacities – Megachallenge: Informal Dynamics of Global Change. Furthermore, we are grateful to the Institute of Remote Sensing Applications (IRSA), Chinese Academy of Sciences, in particular to GU Xingfa and YU Tao, for the fruitful cooperation.


  1. Althausen D, Müller D, Ansmann A et al. Scanning 6-Wavelength 11-Channel Aerosol Lidar. JAtmOceanTechn. 1999;17:1469-1482Google Scholar
  2. Baron PA, Willeke K. Aerosol Measurement: Principles, Techniques, and Applications. New York, United States, Wiley & Sons, 2001Google Scholar
  3. Beall K, Grosshandler W, Luck H. AUBE ’01 – 12th International Conference on Automatic Fire Detection - Proceedings, 2001Google Scholar
  4. Brunekreef B, Holgate ST. Air pollution and health. Lancet 2002;360:1233-42PubMedCrossRefGoogle Scholar
  5. Collis RTH. Lidar: a new atmospheric probe. Q J R Meteorol Soc. 1965 (published online 2006);92:392:220-230Google Scholar
  6. Duggen. Eine Frage der Größe. Ultrafeine Teilchen schädigen Herz und Gefäße. mensch+umwelt 2004;1:3-4Google Scholar
  7. Goddard Space Flight Center. MODIS: moderate resolution imaging spectroradiometer. Greenbelt, Maryland, United States. The Administration, Goddard Space Flight Center. 1995Google Scholar
  8. Gröbner J, and Meleti C. Aerosol optical depth in the UVB and visible wavelength range from Brewer spectrophotometer direct irradiance measurements: 1991–2002. J. Geophys. Res. 2004;109, D09202, doi: 10.1029/2003JD004409 CrossRefGoogle Scholar
  9. Hinds W. Aerosol Technology: Properties, behavior, and measurement of airborne particles 2nd ed. New York, NY: Wiley-Interscience, (1999)Google Scholar
  10. Holben BN, Eck TF, Slutsker I, et al. AERONET - A federated instrument network and data archive for aerosol characterization. Rem Sens Env 1998;66, 1CrossRefGoogle Scholar
  11. Kaufman YJ, Tanré D, Remer LA, Vermote EF, Chu A, and Holben BN. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. JGR 1997;102Google Scholar
  12. Kreyling WG, Semmler-Behnke M, Möller W. Health implications of nanoparticles. J Nanoparticle Res. 2006;8:534–562Google Scholar
  13. Levi RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J Geophys Res 2007;112, D13211, doi: 10.1029/2006JD007811 CrossRefGoogle Scholar
  14. Liu Y, Franklin M, Kahn R, Koutrakis P. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS. Rem Sens Env 2007;Google Scholar
  15. Lubin D, Masom R. Polar Remote Sensing Ice sheets. Springer-Verlag Berlin, Heidelberg, New York 2006Google Scholar
  16. Pope CA, 3 rd, Burnett RT, Thun MJ, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama 2002;287:1132-41PubMedCrossRefGoogle Scholar
  17. Pope CA, 3 rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006;56:709-42PubMedCrossRefGoogle Scholar
  18. Schulz H, Harder V, Ibald-Mulli A, et al. Cardiovascular effects of fine and ultrafine particles. J Aerosol Med 2005;18:1-22PubMedCrossRefGoogle Scholar
  19. Seinfeld, JH, Pandis SN. Atmospheric chemistry and physics: From air pollution to climate change. Wiley, New York 1998Google Scholar
  20. Tripathi SN, Dey S, Chandel A, Srivastra S, Singh RP, Holben BN. Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India Annal. Geophys. 2005;23:1093-1101CrossRefGoogle Scholar
  21. Wendisch M, Müller D, Schell D, Heintzenberg J. An airborne spectral albedometer with active horizontal stabilization. J Atmos Oceanic Technol. 2001;18:1856–1866CrossRefGoogle Scholar
  22. Wendisch M, Pilewskie P, Jäkel E, et al. Airborne measurements of areal spectral surface albedo over different sea and land surfaces, J Geophys Res. 2004;109:D08203, doi: 10.1029/2003JD004392 CrossRefGoogle Scholar
  23. WHO. World Health Report. Reducing risks, promoting healthy life. Geneva: World Health Organisation; 2002Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Britta Mey
    • 1
  • Manfred Wendisch
    • 1
  • Heiko J. Jahn
    • 2
  1. 1.Leipzig Institute for Meteorology (LIM)University of LeipzigLeipzigGermany
  2. 2.Department of Public Health Medicine, School of Public HealthBielefeld UniversityBielefeldGermany

Personalised recommendations