Human Bioclimate and Thermal Stress in the Megacity of Dhaka, Bangladesh: Application and Evaluation of Thermophysiological Indices

Part of the Contributions to Statistics book series (CONTRIB.STAT.)


Human bioclimate refers to the entirety of all climatological and meteorological parameters affecting the living organism. The relevance of climate and weather for human health was already recognized by Hippocrates (Hippocrates Reprint). Later, Alexander von Humboldt defined climate as changes of the atmosphere affecting the human organism, thus putting human bioclimatological aspects in focus (von Humboldt 2004) Energy released or absorbed by change of the aggregate state of water. Since then, numerous studies have been published focusing on the atmosphere-health relationship describing seasonal variations and non-linear relationships between multiple disease (e.g. cardio-respiratory, infectious) and temperature (Burkart and Endlicher 2009; Kunst et al. 1993; Braga et al. 2001; Braga et al. 2002; Basu and Samet 2002).


Cold Stress Heat Wave Urban Heat Island Physiological Equivalent Temperature Cold Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very grateful to the Bangladesh Meteorological Department for providing meteorological data. Furthermore, we would like to thank the German Research Foundation (DFG) for funding the Dhaka INNOVATE project within the priority programme 1233 “Megacities-Megachallenge – Informal Dynamics of Global Change”.


  1. Basu R, Samet JM (2002) Relation between Elevated Ambient Temperature and Mortality: A Review of the Epidemiologic Evidence. Epidemiologic Reviews; 24 (2):190-202. doi: 10.1093/epirev/mxf007 PubMedCrossRefGoogle Scholar
  2. Becker S (1981) Seasonality of Deaths in Matlab, Bangladesh. International Journal of Epidemiology; 10 (3):271-280PubMedCrossRefGoogle Scholar
  3. Becker S, Weng S (1998) Seasonal Patterns of Deaths in Matlab, Bangladesh. International Journal of Epidemiology; 27 (5):814-823PubMedCrossRefGoogle Scholar
  4. Braga AL, Zanobetti A, Schwartz J (2001) The Time Course of Weather Related Deaths. Epidemiology; 12 (6):662-667PubMedCrossRefGoogle Scholar
  5. Braga AL, Zanobetti A, Schwartz J (2002) The Effect of Weather on Respiratory and Cardiovascular Deaths in 12 U.S. Cities. Environmental Health Perspectives; 110 (9):859-863PubMedCrossRefGoogle Scholar
  6. Bull G (1980) The weather and deaths from pneumonia. The Lancet; 315 (8183):1405-1408CrossRefGoogle Scholar
  7. Burkart K, Endlicher W (2009) Assessing the Atmospheric Impact on Public Health in the Megacity of Dhaka, Bangladesh. Die Erde; 140 (1):93-109Google Scholar
  8. Burkart K, Breitner S, Schneider A, Khan M, Krämer A, Endlicher W (2011): The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environmental Pollution, in press Google Scholar
  9. Büttner K (1938) Physikalische Bioklimatologie. Akademische Verlagsgesellschaft LeipzigGoogle Scholar
  10. Cabanac M, Brimmel H (1987) The pathology of human temperature regulation: Thermiatrics. Experientia; 43:19-27PubMedCrossRefGoogle Scholar
  11. Douglas AS, Rawles JM, Al-Sayer H, Allan TM (1991) Seasonality of disease in Kuwait. The Lancet; 337 (8754):1393-1397CrossRefGoogle Scholar
  12. Driscoll DM (1985) Human health. Handbook of Applied Meteorology. John Wiley and SonsGoogle Scholar
  13. Eurowinter Group (1997) Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Lancet; 349:1341-1346CrossRefGoogle Scholar
  14. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. Journal of Applied Physiology 87 (5):1957-1972PubMedGoogle Scholar
  15. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology 45 (2):143-159PubMedCrossRefGoogle Scholar
  16. Hippocrates. (Written 400 B.C.E ) On Airs, Waters, and Places (Reprint). Kessinger Publishing’s Rare ReprintsGoogle Scholar
  17. Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology; 43:71-75PubMedCrossRefGoogle Scholar
  18. Huynen MMTE, Martens P, Schram D, Weijenberg MP, Kunst AE (2001) The Impact of Heat Waves and Cold Spells on Mortality Rates in the Dutch Population. Environmental Health Perspectives; 109 (5):463–470PubMedCrossRefGoogle Scholar
  19. Jendritzky G, Havenith G, Weihs P, Batchvarova E, DeDear R The Universal Thermal Climate Index UTCI. In: NCUB London, London, September 20 2007.Google Scholar
  20. Kalkstein LS, Smoyer KE (1993) The impact of climate change on human health: Some international implications. Experimentia; 49:44-64Google Scholar
  21. Keatinge W, Donaldson G (1995) Cardiovascular mortality in winter. Arctic Medical Research; 54 (suppl 2):16-18PubMedGoogle Scholar
  22. Keatinge W, Coleshaw S, Cotter F, Mattock M, Murphy M, Chelliah R (1984) Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. British Medical Journal (Clin Res Ed); 289 (6456):1405-1408CrossRefGoogle Scholar
  23. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift; 15:259-263CrossRefGoogle Scholar
  24. Kunst AE, Looman CWN, Mackenbach JP (1993) Outdoor Air Temperature and Mortality in the Netherlands: A Time-Series Analysis. American Journal of Epidemiology; 137 (3):331-341PubMedGoogle Scholar
  25. Medina-Ramón M, Zanobetti A, Cavanagh DP, Schwartz J (2006) Extreme Temperatures and Mortality: Assessing Effect Modification by Personal Characteristics and Specific Cause of Death in a Multi-City Case-Only Analysis. Environmental Health Perspectives; 114 (9):1331-1336PubMedCrossRefGoogle Scholar
  26. Meehl GA, Tebaldi C (2004) More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science; 305 (5686):994-997PubMedCrossRefGoogle Scholar
  27. Millqvist E, Bengtsson U, Bake B (1987) Occurrence of breathing problems induced by cold climate in asthmatics--a questionnaire survey. European Journal of Respiratory Diseases; 71 (5):444-449PubMedGoogle Scholar
  28. Neild P, Syndercombe-Court D, Keatinge W, Donaldson G, Mattock M, Caunce M (1994) Cold-induced increases in erythrocyte count, plasma cholesterol and plasma fibrinogen of elderly people without a comparable rise in protein C or factor X. Clinical Science; 86:43-48PubMedGoogle Scholar
  29. Oke T (1973) City size and the urban heat island. Atmospheric Environment; 7 (8):769-779CrossRefGoogle Scholar
  30. Ophir D, Elad Y (1987) Effects of steam inhalation on nasal patency and nasal symptoms in patients with the common cold. American Journal of Otolaryngology 8(3):149-153PubMedCrossRefGoogle Scholar
  31. Parsons K (2003) Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance, Second Edition. Taylor & Francis, LondonGoogle Scholar
  32. Robinson PJ (2001) On the Definition of a Heat Wave. Journal of Applied Meteorology; 40 (4):762-775CrossRefGoogle Scholar
  33. Roth M (2007) Review of urban climate research in (sub)tropical regions. International Journal of Climatology; 27 (14):1859-1873CrossRefGoogle Scholar
  34. Staiger H, Bucher K, Jendritzky G (1997) Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien mit der Maßzahl Grad Celsius. Annalen der Meteorologie; 33:100 - 107Google Scholar
  35. Steadman R (1971) Indices of Windchill of Clothed Persons. Journal of Applied Meteorology; 10:674-683CrossRefGoogle Scholar
  36. Steadman R (1979) The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. Journal of Applied Meteorology 18:861-873CrossRefGoogle Scholar
  37. Verein Deutscher Ingenieure (VDI) (1998) VDI-Richtlinie 3787 Blatt 2 (Technische Regel) Ausgabe 1998-01 Umweltmeteorologie - Methoden zur human-biometeorologischen Bewertung von Klima- und Lufthygiene für die Stadt- und Regionalplanung - Teil 1: Klima.Google Scholar
  38. von Humboldt A (2004) Kosmos. Entwurf einer physischen Weltbeschreibung, vol Auflage: 1. EichbornGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of GeographyHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations