The Context of Innovation: How Established Actors Affect the Prospects of Bio-SNG Technology in Switzerland

  • Steffen Wirth
  • Jochen Markard
Part of the Sustainability and Innovation book series (SUSTAINABILITY)


The implementation of new technological fields is a complex, multi-faceted process. At the outset, it is highly uncertain whether a new technology will succeed, how and where it will be applied, which kind of actors will become involved or how business models will look like. These issues, among others, depend on how an emerging technological field becomes connected with organizations as well as institutional structures in established sectors. Technology development will be shaped by institutional structures that prevail in the corresponding sector. Furthermore, actors from this sector are likely to play a particular role in the innovation process. The development path of a novel technology, in other words, may strongly depend on how the technology links up (or not) with existing sectors. In the study of emerging technological fields, a systematic analysis of context structures should therefore be a crucial element. With this article, we will illustrate how such a context analysis can look like and we will empirically demonstrate how developments in adjacent fields can influence an emerging technology. For this kind of analysis, a conceptual basis is needed that accounts for the complexity and non-linear nature of the underlying processes and the possibly large variety of different context developments. Innovation system approaches, and the technological innovation systems (TIS) perspective in particular, have lately received increasing attention for the study of emerging technologies (e.g. Bergek and Jacobsson 2003; Bergek et al. 2008b; Carlsson et al. 2002; Negro et al. 2008; Jacobsson 2008).


Forest Owner Wood Combustion Energy Wood Wood Supply Municipal Utility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aghion P, David PA, Foray D (2009) Science, technology and innovation for economic growth: linking policy research and practice in ‘STIG Systems’. Res Policy 38(4):681–693CrossRefGoogle Scholar
  2. BAFU (2009) Jahrbuch Wald und Holz 2009. Bundesamt für Umwelt (Hrsg.), BernGoogle Scholar
  3. Baum S, Baier U (2008) Biogene Güterflüsse der Schweiz 2006. Massen- und Energieflüsse. Bundesamt für Umwelt (Hrsg.), BernGoogle Scholar
  4. Bergek A, Jacobsson S (2003) The emergence of a growth industry: a comparative analysis of the German, Dutch and Swedish Wind Turbine Industries. In: Metcalfe JS, Cantner U (eds) Change, transformation and development. Physica-Verlag (Springer), Heidelberg, pp 197–228CrossRefGoogle Scholar
  5. Bergek A, Jacobsson S, Carlsson B, Lindmark S, Rickne A (2008a) Analyzing the functional dynamics of technological innovation systems: a scheme of analysis. Res Policy 37(3):407–429Google Scholar
  6. Bergek A, Jacobsson S, Sanden BA (2008b) ‘Legitimation’ and ‘Development of external economies’: two key processes in the formation phase of technological innovation systems. Technol Anal Strateg Manage 20(5):575–592CrossRefGoogle Scholar
  7. BFE (2009) Schweizer Holzenergiestatistik - Erhebung für das Jahr 2008. Bundesamt für Energie (Hrsg.), BernGoogle Scholar
  8. Carlsson B, Jacobsson S, Holmén M, Rickne A (2002) Innovation systems: analytical and methodological issues. Res Policy 31(2):233–245CrossRefGoogle Scholar
  9. Chaminade C, Edquist C (2005) From theory to practice: the use of systems of innovation approach in innovation policy. Lund University, LundGoogle Scholar
  10. Chang Y-C, Chen M-H (2004) Comparing approaches to systems of innovation: the knowledge perspective. Technol Soc 26(1):17–37CrossRefGoogle Scholar
  11. Edquist C (2005) Systems of innovation: perspectives and challenges. In: Fagerberg J, Mowery DC, Nelson RR (eds) The Oxford handbook of innovation. Oxford University Press, New York, pp 181–208Google Scholar
  12. Energie-Trialog-Schweiz (2009) Energie-Strategie 2050, Impulse für die schweizerische Energiepolitik. Grundlagenbericht. ZürichGoogle Scholar
  13. Geels FW (2002) Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Res Policy 31:1257–1274CrossRefGoogle Scholar
  14. Hekkert M, Suurs RAA, Negro S, Kuhlmann S, Smits R (2007) Functions of innovation systems: a new approach for analysing technological change. Technol Forecast Soc Change 74(4):413–432CrossRefGoogle Scholar
  15. HIS (2006) Jahresbericht 2006. Holzindustrie Schweiz, BernGoogle Scholar
  16. HIS (2007) Jahresbericht 2007. Holzindustrie Schweiz, BernGoogle Scholar
  17. Jacobsson S (2008) The emergence and troubled growth of a ‘biopower’ innovation system in Sweden. Energy Policy 36(4):1491–1508CrossRefGoogle Scholar
  18. Jacobsson S, Johnson A (2000) The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy 28(9):625–640CrossRefGoogle Scholar
  19. Kemp R, Rip A, Schot J (2001) Constructing transition paths through the management of niches. In: Garud R, Karnoe P (eds) Path dependence and creation. Lawrence Erlbaum, London, pp 269–299Google Scholar
  20. Konrad K, Voß J-P, Truffer B (2006) Transformations in consumption and production patterns from a regime perspective. Transformations within and between utility sectors. Perspectives on Radical Changes to Sustainable Consumption and Production (SCP), April, 20–21, 2006, Copenhagen, Conference Proceedings.
  21. Kreber M (2006) Erdgas in der Schweiz − Datenbasis (2005) gwa, 11/2006, 925–930Google Scholar
  22. Markard J, Truffer B (2008a) Actor-oriented analysis of innovation systems: exploring micro-meso level linkages in the case of stationary fuel cells. Technol Anal Strateg Manage 20(4):443–464CrossRefGoogle Scholar
  23. Markard J, Truffer B (2008b) Technological innovation systems and the multi-level perspective: towards an integrated framework. Res Policy 37(4):596–615CrossRefGoogle Scholar
  24. Markard J, Madlener R, Schmid CJ, Stadelmann M, Umbach-Daniel A (2008) Biogasnutzung in der Schweiz-Hemmnisse, Förderfaktoren und zukunftsorientierte Analysen. Eawag/Novatlantis, DübendorfGoogle Scholar
  25. Markard J, Stadelmann M, Truffer B (2009) Prospective analysis of innovation systems. Identifying technological and organizational development options for biogas in Switzerland. Res Policy 38(4):655–667CrossRefGoogle Scholar
  26. Meister U (2007) Elektrizitätsmarkt: Wettbewerb und Entflechtung des « Swiss Grid». Ist die Schweiz bereit für Wettbewerb und für Europa? Avenir Suisse, ZürichGoogle Scholar
  27. Meister U (2009) Kantone als Konzerne. Einblick in die kantonalen Unternehmensbeteiligungen und deren Steuerung, Avenir Suisse, ZürichGoogle Scholar
  28. Müller-Langer F, Oehmichen K (2009) Economic and environmental aspects fo Bio-SNG compared with other biofuels. Bio-SNG’09 - Synthetic Natural Gas from Biomass, International Conference on Advanced Biomass-to-SNG Technologies and their Market Implementation, ZürichGoogle Scholar
  29. Negro S, Hekkert MP (2008) Explaining the success of emerging technologies by innovation system functioning: the case of biomass digestion in Germany. Technol Anal Strateg Manage 20(4):465–482CrossRefGoogle Scholar
  30. Negro S, Hekkert M, Smits R (2007) Explaining the failure of the Dutch innovation system for biomass digestion - a functional analysis. Energy Policy 35(2):925–938CrossRefGoogle Scholar
  31. Negro S, Suurs RAA, Hekkert M (2008) The bumpy road of biomass gasification in the Netherlands: explaining the rise and fall of an emerging innovation system. Technol Forecast Soc Change 75(1):57–77CrossRefGoogle Scholar
  32. North DC (1990) Institutions, Institutional change and economic performance. Cambridge University Press, CambridgeGoogle Scholar
  33. Raven R, Geels FW (2010) Socio-cognitive evolution in niche development: comparative analysis of biogas development in Denmark and the Netherlands (1973–2004). Technovation 30:87–99CrossRefGoogle Scholar
  34. Raven R, Gregersen KH (2007) Biogas plants in Denmark: successes and setbacks. Renewable Sustainable Energy Rev 11:116–132CrossRefGoogle Scholar
  35. Rip A, Kemp R (1998) Technological change. In: Rayner S, Malone EL (eds) Human choice and climate change – resources and technology. Battelle, Columbus, pp 327–399Google Scholar
  36. Steubing B, Tah R, Ludwig C (2011) Life cycle assessment of SNG from wood for heating, electricity, and transportation. Biomass and Bioenergy 35(7):2950–2960Google Scholar
  37. Stucki S (2005) Projekt Methan aus Holz. Paul Scherrer InstitutGoogle Scholar
  38. Suurs RAA, Hekkert MP (2009) Cumulative causation in the formation of a technological innovation system: the case of biofuels in the Netherlands. Technol Forecast Soc Change 76(8):1003–1020CrossRefGoogle Scholar
  39. Verbong GPJ, Geels FW (2007) The ongoing energy transition: lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 35(2):1025–1037CrossRefGoogle Scholar
  40. Vogel A, Jönsson O (2009) The role of Bio-SNG in the European Gas Industry. Bio-SNG’09 – Synthetic Natural Gas from Biomass, International Conference on Advanced Biomass-to-SNG Technologies and their Market Implementation, ZürichGoogle Scholar
  41. Wirth S (2009) 2nd Generation Biogas: Methan aus Holz – Strategie- und Policy-Analyse. Report Subtask 5.3 CCEM-Projekt. Competence Center for Energy and Mobility (CCEM), VilligenGoogle Scholar

Copyright information

© Physica-Verlag HD 2012

Authors and Affiliations

  • Steffen Wirth
    • 1
  • Jochen Markard
    • 1
  1. 1.CIRUS, EAWAGDübendorfSwitzerland

Personalised recommendations