Diffusion Processes in Demographic Transitions: A Prospect on Using Multi Agent Simulation to Explore the Role of Cognitive Strategies and Social Interactions

  • Wander Jager
  • Marco A. Janssen
Part of the Contributions to Economics book series (CE)


Multi agent simulation (MAS) is a tool that can be used to explore the dynamics of different systems. Considering that many demographic phenomena have roots in individual choice behaviour and social interactions it is important that this behaviour is being translated in agent rules. Several behaviour theories are relevant in this context, and hence there is a necessity of using a meta-theory of behaviour as a framework for the development of agent rules. The consumat approach provides a basis for such a framework, as is demonstrated with a discussion of modelling the diffusion of contraceptives. These diffusion processes are strongly influenced by social processes and cognitive strategies. Different possible research lines are discussed which might be addressed with a multi-agent approach like the consumats.


Social Network Social Comparison Cognitive Effort Demographic Transition Early Adopter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajzen, I. (1985): From intentions to actions: A theory of planned behaviour. In: J. Kuhl and Beckmann (Eds.): Action-Control: From cognition to behaviour, 11–39, Springer, Heidelberg, GermanyGoogle Scholar
  2. 2.
    Ajzen, I. (1988): Attitudes, personality and behaviour. Open University Press, Milton Keynes, EnglandGoogle Scholar
  3. 3.
    Ajzen, I. (1991): The theory of planned behavior. Organizational Behavior and Human Decision Processes 50, 179–211CrossRefGoogle Scholar
  4. 4.
    Arthur, B.B., Hall, D.T., Lawrence, B.S. (Eds.) (1989): Handbook of career theory. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Axelrod, R. (1980a): Effective choice in the prisoner’s dilemma. Journal of Conflict Resolution 24, 3–25CrossRefGoogle Scholar
  6. 6.
    Axelrod, R. (1980b): More effective choice in the prisoner’s dilemma. Journal of Conflict Resolution 24, 379–403CrossRefGoogle Scholar
  7. 7.
    Axelrod, R. (1984): The evolution of cooperation. Basic Books, New YorkGoogle Scholar
  8. 8.
    Axelrod, R. (1997): Advancing the art of simulation in the social sciences. In: R. Conte, R. Hegselmann and P. Terna, (Eds.): Simulating Social Phenomena. Springer, BerlinGoogle Scholar
  9. 9.
    Bandura, A. (1977): Social learning theory. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  10. 10.
    Bandura, A. (1986): Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  11. 11.
    Barabasi, A.-L., Albert, R. (1999): Emergence of Scaling in Random Networks, Science 286, 509–512CrossRefGoogle Scholar
  12. 12.
    Bass, E.M. (1969): A new product growth mod el for consumer durables. Management Science 15, 215–227CrossRefGoogle Scholar
  13. 13.
    Ben Zur, H., Breznitz, S.J. (1981): The effect of time pressure on risky choice behavior. Acta Psychologica 47, 89–104CrossRefGoogle Scholar
  14. 14.
    Conte, R., Hegselmann, R., Terna, P. (Eds.) (1997): Simulating Social Phenomena. Springer, BerlinGoogle Scholar
  15. 15.
    Doran, J., Gilbert, N. (1994): Simulating societies: an introduction. In: Gilbert, N., Doran J. (Eds.): Simulating societies: The computer simulation of social phenomena. UCL Press, LondonGoogle Scholar
  16. 16.
    De Bruijn, BJ. (1999): Foundations of Demographic Theory: Choice, Process, Context. Dissertation, Nethurd Publications, GrningenGoogle Scholar
  17. 17.
    Durlauf, S.N. (1997): Insights for socioeconomic modeling. Complexity 2, 3, 47–49CrossRefGoogle Scholar
  18. 18.
    Epstein, J.M., Axtell, R. (1996): Growing artificial societies: Social science from the bottom up. Brookings Institution Press, Washington, D.C.; The MIT Press, CambridgeGoogle Scholar
  19. 19.
    Ernst, A.M. (1998): Resource dilemmas, computer simulated actors and climate change — a methodology to investigate human behavior in a complex domain. In: Stuhler, E.A., De Tombe, D. (Eds.): Complex problem solving — Cognitive psychological issues and environmental policy applications. Hampp press, MünchenGoogle Scholar
  20. 20.
    Fawcett, J.T. (1972): The satisfaction and costs of children: theories, concepts, methods. East West Population Institute, East West Center, HonoluluGoogle Scholar
  21. 21.
    Festinger, L. (1954): A theory of social comparison processes. Human Relations 7, 117–140CrossRefGoogle Scholar
  22. 22.
    Fiske, S.T., Taylor, S.E. (1991): Social Cognition, 2nd. ed. McGraw-Hill, New York, USAGoogle Scholar
  23. 23.
    Gilbert, N., Conte, R. (Eds.) (1995): Artificial societies: The computer simulation of social life. UCL Press, LondonGoogle Scholar
  24. 24.
    Gilbert, G.N., Troitzsch, K.G. (1999): Simulation for the social scientist. Open University Press, Milton KeynesGoogle Scholar
  25. 25.
    Jager, W. (2000): Modelling consumer behaviour. Doctoral thesis. University of Groningen, Centre for Environmental and Traffic psychology, Groningen http: // docserver.ub.rug.nl /eldoc /dis/ppsw/w.jager/Google Scholar
  26. 26.
    Jager, W., Janssen, M.A, De Vries, H.J.M., De Greef, J., Vlek, C.A.J. (2000): Behaviour in commons dilemmas: Homo Economicus and Homo Psychologicus in an ecological-economic model. Ecological Economics, Vol. 35, 357–380CrossRefGoogle Scholar
  27. 27.
    Jager, W., Janssen, M.A., Vlek, C.A.J. (1999): Consumats in a commons dilemma: Testing the behavioural rules of simulated consumers. COV report no. 99-01. Centre for Environment and Traffic Psychology, University of Groningen., GroningenGoogle Scholar
  28. 28.
    Janssen, M.A. (Ed.) (2003): Complexity and Ecosystem Management: The Theory and Practice of Multi-agent Systems, Edward Elgar Publishers, Cheltenham UKJ Northampton, MA, USA. in pressGoogle Scholar
  29. 29.
    Janssen, M.A., Jager, W. (2001): Fashions, habits and changing preferences: simulations of psychological factors affecting market dynamics. Journal of Economic Psychology 22, 745–772CrossRefGoogle Scholar
  30. 30.
    Janssen, M.A., Jager, W. (in press): Self Organisation of Market Dynamics: The Interactions of Consumer Psychology and Structure of Social Networks. Proceedings of the International Workshop on Self-Organization and Evolution of Social Behaviour, September 8–13, 2002, Monte Verita, Ascona, SwitzerlandGoogle Scholar
  31. 31.
    Janssen, M.A., Jager W. (2002): Stimulating diffusion of green products: Co-evolution between firms and consumers. Journal of Evolutionary Economics 12, 283–306CrossRefGoogle Scholar
  32. 32.
    Landis MacKellar, F., Lut, W., McMichael, A.J., Suhrke, A. (1998): Population and climate change. In: Rayner, S. Malone, E.L. (Eds.): Human choice & climate change. Battelle Press, Columbus OhioGoogle Scholar
  33. 33.
    Latané, B. (1981): Psychology of social impact. American Psychologist 36, 343–356CrossRefGoogle Scholar
  34. 34.
    Liebrand, W.B.G., Messick, D.M. (1996): Computer simulation of cooperative decision making. In: Liebrand, W.B.G., Messick, D.M. (Eds.): Frontiers in Social Dilemmas Research, Springer, BerlinCrossRefGoogle Scholar
  35. 35.
    Lindgren, K., Nordahl, M.G. (1995): Cooperation and community structure in artificial ecosystems. In: Langton, C.G. (Ed.): Artificial life, an overview. The MIT Press, Cambridge (Massachusetts), LondonGoogle Scholar
  36. 36.
    Macy, M. (1996): Natural selection and social learning in prisoner’s dilemma: Co-adaptation with genetic algorithms and artificial neural networks. In: Liebrand, W.B.G., Messick, D.M. (Eds.): Frontiers in Social Dilemmas Research. Springer Verlag, Berlin/Heidelberg/New YorkGoogle Scholar
  37. 37.
    Mason, K.O. (1997): Explaining fertility transitions. Demography 34(4), 443–454CrossRefGoogle Scholar
  38. 38.
    Marwell, G., Oliver, P. (1993): The critical mass in collective action: a micro-social theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. 39.
    Molander, P. (1985): The optimal level of generosity in a selfish, uncertain environment. Journal of Conflict Resolution 29, 611–618CrossRefGoogle Scholar
  40. 40.
    Montgomery, M.R., Casterline, J.B. (1993): The diffusion of fertility control in Taiwan: Evidence from pooled cross-section, time series models. Population Studies 47(3), 457–479CrossRefGoogle Scholar
  41. 41.
    Montgomery, M.R., Casterline, J.B. (1998): Social Networks and the Diffusion of Fertility Control. Policy Research Division Working paper No. 119. Population Council, New YorkGoogle Scholar
  42. 42.
    Newell, A., Shaw, J.C., Simon, H.A. (1958): Elements of a theory of human problem solving. Psychological Review 65, 151–166CrossRefGoogle Scholar
  43. 43.
    Newman. M.E.J. (1999) Small Worlds — The Structure of Social Networks. Santa Fe Institute working paper, 99-12-080, Santa Fe, NMGoogle Scholar
  44. 44.
    Nowak. M.A., Sigmund, K., (1992): Tit for tat in heterogeneous populations. Nature 359, 250–253CrossRefGoogle Scholar
  45. 45.
    Palloni, A. (1998): Diffusion in sociological analysis: How useful it is for the study of fertility and mortality. Unpublished paper presented at the workshop on social processes underlying fertility change in developing countries. Committee on Population, January 29–30, 1998, Center for Demography and Ecology. University of Wisconsin, MadisonGoogle Scholar
  46. 46.
    Reed, H., Briere, R., Casterline, J. (Eds.) (1999): The Role of Diffusion Processes in Fertility Change in Developing Countries: Report of a Workshop. National Academy Press, Washington DCGoogle Scholar
  47. 47.
    Rogers, E.M. (1962): Diffusion of innovations. The Free Press, New YorkGoogle Scholar
  48. 48.
    Rogers, E.M. (1995): Diffusion of innovations, fourth edition. The Free Press, LondonGoogle Scholar
  49. 49.
    Ross, J.A., Frankenberg, E. (1993): Findings from two decades of family planning research. The Population Council, New YorkGoogle Scholar
  50. 50.
    Ryder, N.B. (1965): The Cohorts as a Concept in the Study of Social Change. American Sociological Review 30, 843–861CrossRefGoogle Scholar
  51. 51.
    Simon, H.A. (1955): A behavioral model of rational choice. Quarterly Journal of Economics 69, 99–118CrossRefGoogle Scholar
  52. 52.
    Simon, H.A. (1959): Theories of decision making in economics and behavioral science. American Economic Review 49, 253–283Google Scholar
  53. 53.
    Simon, H.A. (1976): Administrative behavior: a study of decision making processes in administrative organizations. Harper, New YorkGoogle Scholar
  54. 54.
    Smith, J., Mitchell. T.R., Beach, L.R. (1982): A cost-benefit mechanism for selecting problem-solving strategies: Some extensions and empirical tests. Organizational Behavior and Human Performance 29, 370–396CrossRefGoogle Scholar
  55. 55.
    Tolnay, S.E. (1995): The spatial diffusion of fertility: A cross-sectional analysis of countries in the American South, 1940. American Sociological Review 60, 299–308CrossRefGoogle Scholar
  56. 56.
    Tversky, A. (1969): Intransitivity of preferences. Psychological Review 76, 31–48CrossRefGoogle Scholar
  57. 57.
    Tversky, A. (1972): Elimination by aspects: a theory of choice. Psychological Review 79, 281–299CrossRefGoogle Scholar
  58. 58.
    Vallacher, R.R., Nowak, A. (1994): The chaos in social psychology. In: Vallacher, R.R., Nowak, A. (Eds.): Dynamical systems in social psychology. Academic Press, Inc., San DiegoGoogle Scholar
  59. 59.
    Wallsten, T.S., Barton, C. (1982): Processing probabilistic multi-dimensional information for decisions. Journal of Experimental Psychology: Learning, Memory. and Cognition 8, 361–384CrossRefGoogle Scholar
  60. 60.
    Watts, D.J., Strogatz, S.H. (1998): Collective dynamics of “small-world” networks. Nature 393, 440–442CrossRefGoogle Scholar
  61. 61.
    Wright, P., (1974): The harassed decision maker: Time pressures, distractions, and the use of evidence. Journal of Applied Psychology 39, 555–561CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Wander Jager
    • 1
  • Marco A. Janssen
    • 2
  1. 1.Faculty of Business, Department of MarketingUniversity of GroningenGroningenThe Netherlands
  2. 2.Center for the Study of Institutions, Population, and Environmental ChangeIndiana UniversityBloomingtonUSA

Personalised recommendations