Advertisement

A Note on the Quality of Statistical Quality Control Procedures

  • Elart von Collani
Conference paper
Part of the Frontiers in Statistical Quality Control book series (FSQC, volume 7)

Abstract

Statistical Quality Control (SQC) deals with the questions how to monitor, control and improve the quality of products and manufacturing processes by means of statistical methods. To this end the quality of products and processes is defined and statistical methods are used to determine the actual quality value. As there are many different statistical methods which can be used in a given situation, the question arises about the quality of statistical methods. Searching statistical literature for an answer reveals that statistical methods are evaluated rather by means of auxiliary criteria like, for instance, unbiasedness and consistency than by a unified measure reflecting quality. Hence, this paper is concerned with filling the existing gap by developing a measure for the quality of statistical procedures.

Keywords

Measurement Procedure Future Event Deterministic Variable Weighted Volume Statistical Quality Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernoulli, J. (1713). Ars Conjectandi. Thurnisorium, Basel.Google Scholar
  2. 2.
    Cantor, M. (1877). Das Gesetz im Zufall. Berlin SW., Verlag von Carl Habel.Google Scholar
  3. 3.
    Clopper, C. J., and Pearson, E. S. (1934). The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika, 26, 404–413.CrossRefMATHGoogle Scholar
  4. 4.
    v. Collani, E., Dräger, K. (2001). Binomial Distribution Handbook for Scientists and Engineers. Birkhäuser, Boston.CrossRefMATHGoogle Scholar
  5. 5.
    v. Collani, E., Dumitrescu, M., and Lepenis, R. (2001). An Optimal Measurement and Prediction Procedure. Economic Quality Control 16, 109–132.MATHMathSciNetGoogle Scholar
  6. 6.
    v. Collani, E., and Dumitrescu, M. (2001). Complete Neyman Measurement Procedure. METRIKA 54, 111–130.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    v. Collani, E., and Dumitrescu, M. (2000). Neyman Exclusion Procedure. Econnomic Quality Control 15, 15–34.MATHGoogle Scholar
  8. 8.
    v. Collani, E., and Dumitrescu, M. (2000). Neyman Comparison Procedure. Economic Quality Control 15, 35–53.MATHMathSciNetGoogle Scholar
  9. 9.
    v. Collani, E., Dumitrescu, M. and Victorina Panaite (2002). Measurement Procedures for the Variance of a Normal Distribution. Economic Quality Control 17, 155–176.MATHMathSciNetGoogle Scholar
  10. 10.
    Crow, E. L. (1956). Confidence Intervals for a Proportion. Biometrika, 43, 423–435.MATHMathSciNetGoogle Scholar
  11. 11.
    Häuser, W. (1997). Die Wurzeln der Wahrscheinlichkeitsrechnung. Franz Steiner Verlag, Stuttgart.Google Scholar
  12. 12.
    Juran, J.M. (Ed.) (1974): Quality Control Handbook. 3rd ed., McGraw-Hill, New York.Google Scholar
  13. 13.
    Laplace, P.-S. (1814). Essai philosophique sur les probabilités, Christian Burgois, Paris.Google Scholar
  14. 14.
    Neider, J. (1986). Statistics, Science and Technology. J. Roy. Statist. Soc. A 149, 109–121.CrossRefGoogle Scholar
  15. 15.
    Neyman, J. (1935). On the Problem of Confidence Intervals. Ann. Math. Statist., 6, 111–116.CrossRefGoogle Scholar
  16. 16.
    Neyman, J. (1937). Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Phil. Trans. Roy. Soc., Ser. A, 236, 333–380.CrossRefGoogle Scholar
  17. 17.
    About, P.-J., Boy, M. (1982). La Correspondance de Blaise Pascal et de Pierre de Fermat. — La Géométrie du Hasard ou le deébut du Calcul des Probabilités. Les Cahiers de Fontanay. Fontenay aux Roses.Google Scholar
  18. 18.
    Schmitz, Ph. S.J. (1990) Probabilismus — das jesuitischste der Moralsysteme. In: Ignatianische Eigenart und Methode der Gesellschaft Jesu. Freiburg.Google Scholar
  19. 19.
    Sterne, T.E. (1954). Some Remarks on Confidence or Fiducial Limits. Biometrika, 41, 275–278.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Elart von Collani
    • 1
  1. 1.University WürzburgWürzburgGermany

Personalised recommendations