Skip to main content
  • 667 Accesses

Abstract

We describe methods for estimating manifolds in high-dimensional spacs.They work by mapping the data into a reproducing kernel Hilbert space and then determining regions in terms of hyperplanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizerman M.A., Braverman É.M., Rozonoér L.I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control 25 821–837.

    Google Scholar 

  2. Belkin M., Niyogi P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6) 1373–1396.

    Article  MATH  Google Scholar 

  3. Ham J., Lee D., Mika S., Schölkopf B. (2004). A kernel view of the dimensionality reduction of manifolds. In Proceedings of ICML (in press).

    Google Scholar 

  4. Kim K.I., Franz M.O., Schölkopf B. (2004). Kernel Hebbian algorithm for single-frame super-resolution. In Statistical Learning in Computer Vision Workshop, Prague.

    Google Scholar 

  5. Kimeidorf G.S., Wahba G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and Applications 33 82–95.

    Article  MathSciNet  Google Scholar 

  6. Roweis S., Saul L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326.

    Article  Google Scholar 

  7. Schölkopf B., Platt J., Shawe-Taylor J., Smola A.J., Williamson R.C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation 13 1443–1471.

    Article  MATH  Google Scholar 

  8. Schölkopf B., Smola A.J. (2002). Learning with kernels. MIT Press, Cambridge, MA.

    Google Scholar 

  9. Steinwart I. (2004). Sparseness of support vector machines— some asymptotically sharp bounds. In S. Thrun, L. Saul, and B. Schölkopf, (eds), Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA.

    Google Scholar 

  10. Vapnik V.N. (1995). The nature of statistical learning theory. Springer Verlag, New York.

    Book  MATH  Google Scholar 

  11. Weston J., Chapelle O., Elisseeff A., Schölkopf B.,Vapnik V. (2003). Kernel dependency estimation. In S. Becker, S. Thrun, and K. Obermayer, (eds), Advances in Neural Information Processing Systems 15, Cambridge, MA, USA. MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schölkopf, B. (2004). Kernel Methods for Manifold Estimation. In: Antoch, J. (eds) COMPSTAT 2004 — Proceedings in Computational Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2656-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2656-2_36

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1554-2

  • Online ISBN: 978-3-7908-2656-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics