Skip to main content
  • 670 Accesses

Abstract

In this paper, we establish some asymptotic results for canonical analysis of vector linear time series when the data possess conditional heteroscedasticity. We show that for correct identification of a vector time series model, it is essential to use a modification, which we prescribe, to a commonly used test statistic for testing zero canonical correlations. A real example and simulation are used to demonstrate the importance of the proposed test statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike H. (1976). Canonical correlation analysis of time series and the use of an information criterion. Systems identification: Advances and Case Studies, eds R. K. Methra and D. G. Lainiotis. New York: Academic Press, 27–96.

    Chapter  Google Scholar 

  2. Berlinet A., Francq C. (1997). On Bartlett’s formula for non-linear processes. Journal of Time Series Analysis 18, 535–552.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bollerslev T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31, 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bollerslev T., Engle R.F., Nelson D.B. (1994). ARCH models. Handbook of Econometrics IV. Elsevces Science B.V., 2959-3-38

    Google Scholar 

  5. Box G.E.P., Jenkins G.M. (1976). Time series analysis: forecasting and control. San Francisco, CA: Holden-Day.

    MATH  Google Scholar 

  6. Box G.E.P., Tiao G.C. (1977). A canonical analysis of multiple time series. Biometrika 64, 355–365.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cooper D.M., Wood E.F. (1982). Identifying multivariate time series models. Journal of Time Series Analysis 3, 153–164.

    Article  MathSciNet  Google Scholar 

  8. Dunsmuir W., Hannan E.J. (1976). Vector linear time series models. Advances in Applied Probability 8, 339–364.

    Article  MATH  MathSciNet  Google Scholar 

  9. Engle R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica 50, 987–1008.

    Article  MATH  MathSciNet  Google Scholar 

  10. Engle R.F., Granger C.W.J. (1987). Co-integration and error-correction: representation, estimation and testing. Econometrica 55, 251–276.

    Article  MATH  MathSciNet  Google Scholar 

  11. Engle R.F., Kroner K.F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory 11, 122–150.

    Article  MathSciNet  Google Scholar 

  12. Hannan E.J., Deistler M. (1988). The statistical theory of linear systems. John Wiley, New York.

    MATH  Google Scholar 

  13. Hotelling, H. (1936). Relations between two sets of variables. Biometrika 28, 321–377.

    MATH  Google Scholar 

  14. Min W.L., Tsay R.S. (2004). On canonical analysis of multivariate time series. Working paper, GSB, University of Chicgao.

    Google Scholar 

  15. Quenouille M.H. (1957). The analysis of multiple time series. London: Griffin.

    Google Scholar 

  16. Romano J.P., Thombs L.A. (1996). Inference for autocorrelations under weak assumptions. Journal of the American Statistical Association 91, 590–600.

    Article  MATH  MathSciNet  Google Scholar 

  17. Tiao G.C., Tsay R.S. (1989). Model specification in multivariate time series (with discussion). Journal of the Royal Statistical Society. Ser. B 51, 157–213.

    MATH  MathSciNet  Google Scholar 

  18. Tsay R.S. (1989a). Identifying multivariate time series models. Journal of Time Series Analysis 10, 357–371.

    Article  MATH  MathSciNet  Google Scholar 

  19. Tsay R.S. (1989b). Parsimonious parametrization of vector autoregressive moving average models. Journal of Business and Economic Statistics 7, 327–341.

    Google Scholar 

  20. Tsay R.S. (1991). Two canonical forms for vector ARMA processes. Statistica Sinica 1, 247–269.

    MATH  MathSciNet  Google Scholar 

  21. Tsay R.S. (2002). Analysis of financial time series. John Wiley: New York.

    Book  MATH  Google Scholar 

  22. Tsay R.S., Tiao G.C. (1985). Use of canonical analysis in time series model identification. Biometrika 72, 299–315.

    Article  MATH  MathSciNet  Google Scholar 

  23. Wu W.B. (2003). Empirical processes of long-memory sequences. Bernoulli 9, 809–831.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Min, W., Tsay, R.S. (2004). On Canonical Analysis of Vector Time Series. In: Antoch, J. (eds) COMPSTAT 2004 — Proceedings in Computational Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2656-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2656-2_27

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1554-2

  • Online ISBN: 978-3-7908-2656-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics