Skip to main content

Abstract

Modern technology enables the collection of vast quantities of data. Smart automatic data selection algorithms are needed to discover important data structures that are obscured by other structure or random noise. We suggest an efficient and flexible algorithm that chooses the “best ” subsample from a given dataset. We avoid the combinatorial search over all possible subsamples and efficiently find the datapoints that describe the primary structure of the data. Although the algorithm can be used in many analysis scenarios, this paper explores the application of the method to problems in multidimensional scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike H. (1973). Information theory and an extension of the maximum likelihood principle. Second International Symposium on Information Theory, 267–281.

    Google Scholar 

  2. Andrews D.F., Bickel P. J., Hampel F. R., Huber P. J. Rogers W.H., Tukey J.W. (1972). Robust estimates of location: survey and advances. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  3. Davies P.L. (1987). Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices. Annals of Statistics 15, 1269–1292.

    Article  MATH  MathSciNet  Google Scholar 

  4. Davies P.L. (1990). The asymptotics of S-estimators in the linear regression model. Annals of Statistics 18, 1651–1675.

    Article  MATH  MathSciNet  Google Scholar 

  5. Hawkins D.M. (1993). A feasible solution algorithm for the minimum volume ellipsoid estimator in multivariate data. Computational Statistics 9, 95–107.

    Google Scholar 

  6. Karr Alan F., Sanil Ashish P., Banks David L. (2002). Data quality: a statistical perspective. National Institute of Statistical Sciences, Research Triangle Park, NC.

    Google Scholar 

  7. Li X.-B. (2002). Data reduction vis adaptive sampling. Communications in Information and Systems 2, 53–68.

    MATH  Google Scholar 

  8. Mallows C.L. (1973).Some comments on C p . Technometrics 15, 661–675.

    MATH  Google Scholar 

  9. Rousseeuw P.J., Leroy A.M. (1987). Robust regression and outliers detection. Wiley, New York.

    Book  Google Scholar 

  10. Rousseeuw P.J., d Yohai V. (1984). Robust regression by means of Sestimators. In Robust and Nonlinear Time Series Analysis, J. Franke, W. Härdie, R.D. Martin (eds.), Lecture Notes in Statistics 26, SpringerVerlag, New York, 256–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

House, L.L., Banks, D. (2004). Robust Multidimensional Scaling. In: Antoch, J. (eds) COMPSTAT 2004 — Proceedings in Computational Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2656-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2656-2_20

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1554-2

  • Online ISBN: 978-3-7908-2656-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics