Structural Equation Methodology

  • Patrick Heinecke
Part of the Contributions to Management Science book series (MANAGEMENT SC.)


Since the 1970s, structural equation modeling (SEM) has been applied for the analysis of causal relationships in economic and social sciences (Götz and Liehr-Gobbers 2004: 714; Henseler 2005: 70; Herrmann et al. 2006: 35). SEM is a multivariate statistical technique that – by integrating different regression- and factor-analytic methods – allows the testing and estimation of theoretically derived, casual relationships between variables (Bortz 1993: 436; Rigdon 1998: 251). Its high popularity in economic and social sciences is mainly attributed to two factors. First, it is the only multivariate statistical method that allows one to simultaneously assess the quality of construct measurement in terms of reliability and validity on the one hand, while on the other hand estimating the strength of a relationship between constructs (Backhaus et al. 2008: 511; Henseler 2005: 70). Second, SEM enables scientists to measure not only observable (manifest) variables, but also unobservable (latent) variables (Chin 1998b: 296; Chin and Newsted 1999: 307; Herrmann et al. 2006: 35; Rigdon 1998: 251). As latent variables are very common in economic and social sciences, the ability to model latent variables is of particular importance (Chin 1998b: 296). Due to the fact that latent variables cannot be observed directly, they are assigned manifest variables – which can be derived empirically and measured on the basis of metric scales – in a measurement model (or outer model) (Backhaus et al. 2008: 513; Henseler 2005: 70), as illustrated in Fig. 3.1


Latent Variable Structural Equation Modeling Measurement Model Latent Construct Formative Indicator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albers, S., & Götz, O. (2006). Messmodelle mit Konstrukten zweiter Ordnung in der betriebswirtschaftlichen Forschung. Die Betriebswirtschaft, 66(6), 669–677.Google Scholar
  2. Albers, S., & Hildebrandt, L. (2006). Methodische Probleme bei der Erfolgsfaktoren-forschung – Messfehler, formative versus reflektive Indikatoren und die Wahl des Strukturgleichungs-Modells. Zeitschrift für betriebswirtschaftliche Forschung, 58(2), 2–33.Google Scholar
  3. Anderson, J. C., & Gerbing, D. W. (1991). Predicting the performance of measures in a confirmatory factor analysis with a pretest assessment of their substantive validities. Journal of Applied Psychology, 76(5), 732–740.CrossRefGoogle Scholar
  4. Backhaus, K., Blechschmidt, B., & Eisenbeiß, M. (2006). Der Stichprobeneinfluss bei Kausalanalysen. Die Betriebswirtschaft, 66(6), 711–726.Google Scholar
  5. Backhaus, K., & Ebers, M. (2006). Die Anwendung der Kausalanalyse in der betriebswirtschaftlichen Forschung. Die Betriebswirtschaft, 66(6), 607–608.Google Scholar
  6. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2008). Multivariate Analyse-methoden: Eine anwendungsorientierte Einführung. Berlin/Heidelberg: Springer.Google Scholar
  7. Bagozzi, R. P. (1977). Structural equation models in experimental research. Journal of Marketing Research, 14(2), 209–226.CrossRefGoogle Scholar
  8. Bagozzi, R. P. (1998). A prospectus for theory construction in marketing: Revisited and revised. In L. Hildebrandt & C. Homburg (Eds.), Die Kausalanalyse: Ein Instrument der empirischen betriebswirtschaftlichen Forschung (pp. 45–81). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  9. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.CrossRefGoogle Scholar
  10. Balderjahn, I. (1986). Das umweltbewusste Konsumentenverhalten: Eine empirische Studie. Berlin: Duncker & Humblot.Google Scholar
  11. Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.CrossRefGoogle Scholar
  12. Belsey, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. New York, NY: John Wiley and Sons.CrossRefGoogle Scholar
  13. Belsey, D. A., Kuh, E., & Welsch, R. E. (2004). Regression diagnostics: Identifying influential data and sources of collinearity. New York, NY: John Wiley and Sons.Google Scholar
  14. Betzin, J., & Henseler, J. (2005). Einführung in die Funktionsweise des PLS-Algorithmus. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 49–69). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  15. Bliemel, F., Eggert, A., Fassott, G., & Henseler, J. (2005). Die PLS-Pfadmodellierung: Mehr als eine Alternative zur Kovarianzstrukturanalyse. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 9–16). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  16. Bohrnstedt, G. W. (1970). Reliability and validity assessment in attitude measurement. In G. F. Summers (Ed.), Attitude measurement (pp. 80–99). London: Wiley.Google Scholar
  17. Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: John Wiley and Sons.Google Scholar
  18. Bollen, K. A., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305–314.CrossRefGoogle Scholar
  19. Bollen, K. A., & Ting, K. (2000). A tetrad test for causal indicators. Psychological Methods, 5(1), 3–22.CrossRefGoogle Scholar
  20. Bortz, J. (1993). Statistik für Sozialwissenschaftler. Berlin/Heidelberg: Springer.Google Scholar
  21. Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Beverly Hills, CA: Sage.Google Scholar
  22. Carnap, R. (1966). Philosophical foundations of physics: An introduction to the philosophy of science. New York, NY: Basic Books.Google Scholar
  23. Cassel, C., Hackl, P., & Westlund, A. H. (1999). Robustness of partial least-squares method for estimating latent variable quality structures. Journal of Applied Statistics, 26(4), 435–446.CrossRefGoogle Scholar
  24. Chin, W. W. (1998a). Issues and opinion on structural equation modeling. Management Information Systems Quarterly, 22(1), 7–16.Google Scholar
  25. Chin, W. W. (1998b). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  26. Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217.CrossRefGoogle Scholar
  27. Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 307–342). Thousand Oaks, CA: Sage.Google Scholar
  28. Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64–73.CrossRefGoogle Scholar
  29. Churchill, G. A. (1987). Marketing research: Methodological foundations. Fort Worth, TX/Chicago, IL: Dryden Press.Google Scholar
  30. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  31. Costner, H. L. (1969). Theory, deduction, and rules of correspondance. American Journal of Sociology, 75(2), 245–263.CrossRefGoogle Scholar
  32. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.CrossRefGoogle Scholar
  33. Diamantopoulos, A., & Papadopoulos, N. (2010). Assessing the cross-national invariance of formative measures: Guidelines for international business researchers. Journal of International Business Studies, 41(2), 360–370.CrossRefGoogle Scholar
  34. Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269–277.CrossRefGoogle Scholar
  35. Diller, H. (2006). Probleme der Handhabung von Strukturgleichungsmodellen in der betriebswirtschaftlichen Forschung. Die Betriebswirtschaft, 66(6), 611–617.Google Scholar
  36. Eberl, M. (2006). Formative und reflektive Konstrukte und die Wahl des Strukturgleichungsverfahrens. Die Betriebswirtschaft, 66(6), 651–668.Google Scholar
  37. Efron, B., & Gong, G. (1983). A leisurely look at bootstrap, the jacknife and cross-validation. The American Statistican, 37(1), 36–48.CrossRefGoogle Scholar
  38. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York, NY: Chapman & Hall.Google Scholar
  39. Eggert, A., & Fassott, G. (2005). Zur Verwendung formativer und reflektiver Indikatoren in Strukturgleichungsmodellen: Bestandsaufnahme und Anwendungsempfehlungen. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 31–47). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  40. Eggert, A., Fassott, G., & Helm, S. (2005). Identifizierung und Quantifizierung mediierender und moderierender Effekte in komplexen Kausalstrukturen. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 101–116). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  41. Fassott, G. (2005). Die PLS-Pfadmodellierung: Entwicklungsrichtungen, Möglichkeiten, Grenzen. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 19–29). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  42. Fassott, G. (2006). Operationalisierung latenter Varialben in Strukturgleichungsmodellen: Eine Standortbestimmung. Zeitschrift für betriebswirtschaftliche Forschung, 58(2), 67–88.Google Scholar
  43. Fincham, R., & Clark, T. (2009). Introduction: Can we bridge the rigour-relevance gap? Journal of Management Studies, 46(3), 510–515.CrossRefGoogle Scholar
  44. Fornell, C. (1987). A second generation of multivariate analysis: Classification of methods and implications for marketing research. In M. J. Houston (Ed.), Review of marketing (pp. 407–450). Chicago, IL: American Marketing Association.Google Scholar
  45. Fornell, C. (1989). The blending of theoretical and empirical knowledge in structural equations with unobservables. In H. Wold (Ed.), Theoretical empiricism: A general rationale for scientific model-building (pp. 153–173). New York, NY: Paragon House.Google Scholar
  46. Fornell, C., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 52–78). Cambridge, MA: Blackwell.Google Scholar
  47. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.CrossRefGoogle Scholar
  48. Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70(350), 320–328.CrossRefGoogle Scholar
  49. Giere, J., Wirtz, B. W., & Schilke, O. (2006). Mehrdimensionale Konstrukte. Die Betriebswirtschaft, 66(6), 678–695.Google Scholar
  50. Giering, A. (2000). Der Zusammenhang zwischen Kundenzufriedenheit und Kundenloyalität: Eine Untersuchung moderierender Effekte. Wiesbaden: Gabler.Google Scholar
  51. Götz, O., & Liehr-Gobbers, K. (2004). Analyse von Strukturgleichungsmodellen mit Hilfe der Partial-Least-Squares(PLS)-Methode. Die Betriebswirtschaft, 64(6), 714–738.Google Scholar
  52. Grace, J. B. (2006). Structural equation modeling and natural systems. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  53. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  54. Hartmann, F. G. H., & Moers, F. (1999). Testing contingency hypotheses in budgetary research: An evaluation of the use of moderated regression analysis. Accounting, Organizations and Society, 24(4), 291–315.CrossRefGoogle Scholar
  55. Harzing, A.-W. (1997). Response rates in international mail surveys: Results of a 22-country study. International Business Review, 6(6), 641–665.CrossRefGoogle Scholar
  56. Harzing, A.-W. (2000). Cross-national industrial mail surveys: Why do response rates differ between countries? Industrial Marketing Management, 29(3), 243–254.CrossRefGoogle Scholar
  57. Hauser, R. M., & Goldberger, A. S. (1971). The treatment of unobservable variables in path analysis. In H. L. Costner (Ed.), Sociological methodology (pp. 81–117). San Francisco, CA: Jossey-Bass.Google Scholar
  58. Helm, S. (2005). Entwicklung eines formativen Messmodells für das Konstrukt Unternehmensreputation. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 241–254). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  59. Hempel, C. G. (1951). The concept of cognitive significance: A reconsideration. Proceedings of the American Academy of Arts and Sciences, 80(1), 61–77.CrossRefGoogle Scholar
  60. Henseler, J. (2005). Einführung in die PLS-Pfadmodellierung. Wirtschaftswissen-schaftliches Studium, 34(2), 70–75.Google Scholar
  61. Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New challenges to international marketing (Advances in international marketing, Vol. 20, pp. 277–319). Bingley: Emerald Group Publishing Limited.Google Scholar
  62. Herrmann, A., Huber, F., & Kressmann, F. (2006). Varianz- und kovarianzbasierte Strukturgleichungsmodelle – Ein Leitfaden zu deren Spezifikation, Schätzung und Beurteilung. Zeitschrift für betriebswirtschaftliche Forschung, 58(2), 34–66.Google Scholar
  63. Hildebrandt, L. (2004). Strukturgleichungsmodelle für die Konsumentenverhaltensforschung – Methodische Trends und Softwareentwicklungen. In A. Gröppel-Klein (Ed.), Konsumentenverhaltensforschung im 21. Jahrhundert (pp. 541–564). Wiesbaden: Gabler.Google Scholar
  64. Hildebrandt, L., & Temme, D. (2006). Probleme der Validierung mit Strukturgleichungs-modellen. Die Betriebswirtschaft, 66(6), 618–639.Google Scholar
  65. Hodgkinson, G. P., & Rousseau, D. M. (2009). Bridging the rigour-relevance gap in management research: It’s already happening! Journal of Management Studies, 46(3), 534–546.CrossRefGoogle Scholar
  66. Homburg, C. (1992). Die Kausalanalyse: Eine Einführung. Wirtschaftswissenschaftliches Studium, 21(10), 499–508. 541–544.Google Scholar
  67. Homburg, C., & Baumgartner, H. (1998). Beurteilung von Kausalmodellen: Bestandsaufnahme und Anwendungsempfehlungen. In L. Hildebrandt & C. Homburg (Eds.), Die Kausalanalyse: Ein Instrument der empirischen betriebswirtschaftlichen Forschung (pp. 343–369). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  68. Homburg, C., & Dobratz, A. (1998). Iterative Modellselektion in der Kausalanalyse. In L. Hildebrandt & C. Homburg (Eds.), Die Kausalanalyse: Ein Instrument der empirischen betriebswirtschaftlichen Forschung (pp. 447–474). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  69. Homburg, C., & Giering, A. (1996). Konzeptualisierung und Operationalisierung komplexer Konstrukte: Ein Leitfaden für die Marketingforschung. Marketing – Zeitschrift für Forschung und Praxis, 18(1), 5–24.Google Scholar
  70. Homburg, C., & Giering, A. (2001). Personal characteristics as moderators of the relationship between customer satisfaction and loyalty – An empirical analysis. Psychology & Marketing, 18(1), 43–66.CrossRefGoogle Scholar
  71. Homburg, C., & Hildebrandt, L. (1998). Die Kausalanalyse: Bestandsaufnahme, Entwicklungsrichtungen, Problemfelder. In L. Hildebrandt & C. Homburg (Eds.), Die Kausalanalyse: Ein Instrument der empirischen betriebswirtschaftlichen Forschung (pp. 15–43). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  72. Homburg, C., & Klarmann, M. (2006). Die Kausalanalyse in der empirischen betriebswirtschaftlichen Forschung – Problemfelder und Anwendungsempfehlungen. Die Betriebswirtschaft, 66(6), 727–748.Google Scholar
  73. Huber, F., Heitmann, M., & Herrmann, A. (2006). Ansätze zur Kausalmodellierung mit Interaktionseffekten. Die Betriebswirtschaft, 66(6), 696–710.Google Scholar
  74. Huber, F., Herrmann, A., Meyer, F., Vogel, J., & Vollhardt, K. (2007). Kausalmodellierung mit Partial Least Squares: Eine anwendungsorientierte Einführung. Wiesbaden: Gabler.Google Scholar
  75. Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195–204.CrossRefGoogle Scholar
  76. Hüttner, M., & Schwarting, U. (1999). Explorative Faktorenanalyse. In C. Homburg & A. Herrmann (Eds.), Marktforschung: Methoden – Anwendungen – Praxisbeispiele (pp. 381–412). Wiesbaden: Gabler.Google Scholar
  77. Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199–218.CrossRefGoogle Scholar
  78. Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36(2), 109–133.CrossRefGoogle Scholar
  79. Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York, NY: Academic Press.Google Scholar
  80. Jöreskog, K. G., & Sörbom, D. (1988). LISREL 7: A guide to the program and applications. Chicago, IL: SPSS, Inc.Google Scholar
  81. Jöreskog, K. G., & Wold, H. (1982). The ML and PLS technique for modeling with latent variables: Historical and comparative aspects. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction (pp. 263–270). Amsterdam: North-Holland.Google Scholar
  82. Kieser, A., & Leiner, L. (2009). Why the rigour-relevance gap in management research is unbridgeable. Journal of Management Studies, 46(3), 516–533.CrossRefGoogle Scholar
  83. Kieser, A., & Nicolai, A. T. (2003). Mit der Theorie die wilde Praxis reiten, valleri, vallera, valleri? Die Betriebswirtschaft, 63(5), 589–594.Google Scholar
  84. Kieser, A., & Nicolai, A. T. (2005). Success factor research: Overcoming the trade-off between rigor and relevance? Journal of Management Inquiry, 14(3), 275–279.CrossRefGoogle Scholar
  85. Kirstein, S. (2009). Unternehmensreputation: Corporate social responsibility als strategische Option für deutsche Automobilhersteller. Wiesbaden: Gabler.Google Scholar
  86. Kleinbaum, D. G., Kupper, L., & Muller, K. E. (1988). Applied regression analysis and other multivariate methods. Boston: PWS-Kent Publishing Company.Google Scholar
  87. Krafft, M. (1999). An empirical investigation of the antecedents of sales force control systems. Journal of Marketing, 63(3), 120–134.CrossRefGoogle Scholar
  88. Krafft, M., Götz, O., & Liehr-Gobbers, K. (2005). Die Validierung von Strukturgleichungs-modellen mit Hilfe des Partial-Least-Squares (PLS)-Ansatzes. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 71–86). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  89. Lee, D. Y. (2000). Retail bargaining behaviour of American and Chinese customers. European Journal of Marketing, 34(1/2), 190–206.CrossRefGoogle Scholar
  90. Lohmöller, J.-B. (1984). LVPLS, program manual. Latent variables path analysis with partial least-squares estimation. Köln: Zentralarchiv für empirische Sozialforschung.Google Scholar
  91. Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Physica-Verlag.Google Scholar
  92. Malhotra, N. K. (1993). Marketing research: An applied orientation. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  93. Maloney, P. (2007). Absatzmittlergerichtetes, identitätsbasiertes Markenmanagement: Eine Erweiterung des innengerichteten, identitätsbasierten Marken-managements unter besonderer Berücksichtigung von Premiummarken. Wiesbaden: Gabler.Google Scholar
  94. McNaughton, R. B. (2002). The use of multiple export channels by small knowledge-intensive firms. International Marketing Review, 19(2/3), 190–203.CrossRefGoogle Scholar
  95. Nacif, R. C. (2003). Online customer loyalty. Wiesbaden: DUV.Google Scholar
  96. Nunally, J. C. (1978). Psychometric theory. New York, NY: McGraw Hill.Google Scholar
  97. Peter, S. I. (1997). Kundenbindung als Marketingziel: Identifikation und Analyse zentraler Determinanten. Wiesbaden: Gabler.Google Scholar
  98. Reinartz, W., Krafft, M., & Hoyer, W. D. (2004). The customer relationship management process: Its measurement and impact on performance. Journal of Marketing Research, 41(3), 293–305.CrossRefGoogle Scholar
  99. Reinecke, J. (2005). Strukturgleichungsmodelle in den Sozialwissenschaften. München/Wien: Oldenbourg.Google Scholar
  100. Rigdon, E. E. (1998). Structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 251–294). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  101. Rindskopf, D. (1984). Using phantom and imaginary latent variables to parameterize constraints in linear structural models. Psychometrika, 49(1), 37–47.CrossRefGoogle Scholar
  102. Ringle, C. M. 2004. Gütemaße für den Partial Least Squares-Ansatz zur Bestimmung von Kausalmodellen, Working paper no. 16. Hamburg: Institut für Industriebetriebslehre und Organisation, Universität Hamburg.Google Scholar
  103. Ringle, C. M., Boysen, N., Wende, S., & Will, A. (2006). Messung von Kausalmodellen mit dem Partial-Least-Squares-Verfahren. Das Wirtschaftsstudium, 35(1), 81–87.Google Scholar
  104. Ringle, C. M., Wende, S., & Will, A. 2005. SmartPLS: Release 2.0 M3 (beta). University of Hamburg, Germany.
  105. Rossiter, J. R. (2002). The C-OAR-SE procedure for scale development in marketing. International Journal of Research in Marketing, 19(4), 305–335.CrossRefGoogle Scholar
  106. Sarkar, S., & Pfeifer, J. (2005). The philosophy of science: An encyclopedia. London: Routledge.Google Scholar
  107. Scholderer, J., & Balderjahn, I. (2005). PLS versus LISREL: Ein Methodenvergleich. In F. Bliemel, A. Eggert, G. Fassott, & J. Henseler (Eds.), Handbuch Pfadmodellierung: Methode – Anwendung – Praxisbeispiele (pp. 87–98). Stuttgart: Schäffer-Poeschel Verlag.Google Scholar
  108. Scholderer, J., Balderjahn, I., & Paulssen, M. (2006). Kausalität, Linearität, Reliabilität: Drei Dinge, die Sie nie über Strukturgleichungsmodelle wissen wollten. Die Betriebswirtschaft, 66(6), 640–650.Google Scholar
  109. Schulze, P. M. (1998). Beschreibende Statistik. München/Wien: Oldenbourg.Google Scholar
  110. Seltin, N., & Keeves, J. P. (1994). Path analysis with latent variables. In T. Husen & T. Postlethwaite (Eds.), The international encyclopedia of education (pp. 4352–4359). Oxford: Oxford University Press.Google Scholar
  111. Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422–445.CrossRefGoogle Scholar
  112. Starkey, K., Hatchuel, A., & Tempest, S. (2009). Management research and the new logics of discovery and engagement. Journal of Management Studies, 46(3), 547–558.CrossRefGoogle Scholar
  113. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society (Series B), 36(2), 111–147.Google Scholar
  114. Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.CrossRefGoogle Scholar
  115. Venaik, S., Midgley, D. F., & Devinney, T. M. (2005). Dual paths to performance: The impact of global pressures on MNC subsidiary conduct and performance. Journal of International Business Studies, 36(6), 655–675.CrossRefGoogle Scholar
  116. Venkatraman, N. (1989a). Strategic orientation of business enterprises: The construct, dimensionality, and measurement. Management Science, 35(8), 942–962.CrossRefGoogle Scholar
  117. Weiber, R., & Adler, J. (2002). Hemnisfaktoren im Electronic Business. Ansatzpunkte einer theoretischen Systematisierung und empirische Evidenzen. Marketing Zeitschrift für Forschung und Praxis, 24(Special Issue “E-Marketing”), 5–12.Google Scholar
  118. Werts, C. E., Linn, R. L., & Jöreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement, 34(1), 25–33.CrossRefGoogle Scholar
  119. Wold, H. (1966). Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiah (Ed.), Multivariate analysis (pp. 391–420). New York, NY: Academic Press.Google Scholar
  120. Zinnbauer, M., & Eberl, M. (2005). Überprüfung der Spezifikation und Güte von Strukturgleichungsmodellen. Wirtschaftswissenschaftliches Studium, 34(10), 566–572.Google Scholar

Copyright information

© Physica-Verlag Heidelberg 2011

Authors and Affiliations

  • Patrick Heinecke
    • 1
  1. 1.University of Erlangen-NürnbergErlangenGermany

Personalised recommendations