A Perspective for Analyzing the Socio-Economic System and Interactive Human Behaviour

  • Yuji Aruka


We should distinguish freedom from randomness, particularly in a socio-economic system as Mainzer (2007) has systematically envisaged. As econophysics has successfully proved the properties of power law as well as lognormal distribution in an actual socio-economic system, we also are faced with a much higher probability of unfair or nonegalitarian consequences for equal opportunities. This belief of a free market system should be studied. We briefly look at a recent idea of complex networks to characterize a distribution of systems.


Nash Equilibrium Preferential Attachment Final Demand Reaction Curve Efficient Market Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aoki M, Yoshikawa H (2006) Reconstructing macroeconomics: a perspective from statistical physics and combinatorial stochastic processes. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  2. Aruka Y (2001) Avatamsaka game structure and experiment on the web. In: Aruka Y (ed) Evolutionary controversies in economics. Springer, Tokyo, pp 115–132CrossRefGoogle Scholar
  3. Aruka Y, Akiyama E (2009) Non-self-averaging of a two-person game with only positive spillover: a new formulation of Avatamsaka’s dilemma. J Econ Interact Coord 4(2):135–161CrossRefGoogle Scholar
  4. Barabási A-L, Albert A-L (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefGoogle Scholar
  5. Basar T, Olsder GJ (1995) Dynamic noncooperative game theory, 2nd edn. Academic, New York, NYGoogle Scholar
  6. Caon GM, Gonçalves S, Iglesias JR (2007) The unfair consequences of equal opportunities: comparing exchange models of wealth distribution. Eur J Phys Spl Top 143:69–74CrossRefGoogle Scholar
  7. Capocci A, Caldarelli G, De Los Rios P (2003) Quantitative description and modeling of real networks. Phys Rev E 68:047101CrossRefGoogle Scholar
  8. Chen CI, Cruz JB Jr (1972) Stackelberg solution for two person games with biased information patterns. IEEE Trans Autom Control 6:791–798CrossRefGoogle Scholar
  9. Chen B, Zadrozny PA (2002) An anticipative feedback solution for the infinite-horizon, linear-quadratic, dynamic, Stackelberg game. J Econ Dyn Control 26(9–10):1397–1416CrossRefGoogle Scholar
  10. Drăgulescu A, Yakovenkoa VM (2000) Evidence for the exponential distribution of income in the USA. Eur J Phys B 17:723–729CrossRefGoogle Scholar
  11. Drăgulescu A, Yakovenkoa VM (2001) Statistical mechanics of money. Eur J Phys B 20:585–589CrossRefGoogle Scholar
  12. Drouffe J-M, Godrèche C, Camia F (1998) A simple stochastic model for the dynamics of condensation. J Phys A 31:L19Google Scholar
  13. Han Z, Schefold B (2006) An empirical investigation of paradoxes: reswitching and reverse capital deepening in capital theory. Camb J Econ 30(5):737–765CrossRefGoogle Scholar
  14. Haurie A (1993) From repeated to differential games: how time and uncertainty pervade the theory of games. In: Binmore K, Kirman A, Tani P (eds) Frontiers of game theory. MIT, Cambridge, MA, pp 165–193Google Scholar
  15. Hildenbrand W (1994) Market demand. Princeton University Press, PrincetonGoogle Scholar
  16. Holland JH (1992) Adaptation in natural and artificial systems. MIT, Cambridge, MAGoogle Scholar
  17. Holland JH (1995) Hidden order: how adaptation builds complexity. Basic Books, New YorkGoogle Scholar
  18. Kono N (2008) Noncooperative game in cooperation: reformulation of correlated equilibria. Kyoto Econ Rev 77(2):107–125Google Scholar
  19. Kono N (2009) Noncooperative game in cooperation: reformulation of correlated equilibria (II). Kyoto Econ Rev 78(1):1–18Google Scholar
  20. Krapivsky PL, Redner S (2001) Organization of growing random networks. Phys Rev E 63:066123CrossRefGoogle Scholar
  21. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629CrossRefGoogle Scholar
  22. Kuninaka H, Matsushita M (2009) Stastical properties of socio-physical complex systems. Kagaku, Iwanami, Tokyo 79(10):1146–1155Google Scholar
  23. LabbÉ M, Marcotte P, Savard G (1999) A bilevel model of taxation and its application to optimal highway pricing. Manage Sci 44:1608–1622CrossRefGoogle Scholar
  24. Levahri D, Samuelson PA (1966) A reswitching theorem is false. Q J Econ 80:68–76Google Scholar
  25. Li M, Cruz JB Jr, Simaan MA (2002) An approach to discrete-time incentive feedback Stackelberg games. IEEE Trans Syst Man Cybern A 32:472–481CrossRefGoogle Scholar
  26. Mainzer K (2007) (firstly published in 1994) Thinking in complexity. The computational dynamics of matter, mind, and mankind, 5th edn. Springer, New YorkGoogle Scholar
  27. Martín-Herrán G, Cartigny P, Motte E, Tidball M (2006) Deforestation and foreign transfers: a Stackelberg differential game approach. Comput Oper Res 33(2):386–400CrossRefGoogle Scholar
  28. Mimkes J (2010) Stokes integral of economic growth: Calculus and the Solow model. Physica A 389:1665–1676CrossRefGoogle Scholar
  29. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701CrossRefGoogle Scholar
  30. Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67:026126CrossRefGoogle Scholar
  31. Nie PY (2005) Dynamic Stackelberg games under open-loop complete information. J Franklin Inst 342(7):737–748CrossRefGoogle Scholar
  32. Nie PY (2007) Discrete time dynamic multi-leader–follower games with stage-depending leaders under feedback information. Nonlinear Anal Hybrid Syst 1(4):548–559CrossRefGoogle Scholar
  33. Nie PY, Chen LH, Fukushima M (2006) Dynamic programming approach to discrete time dynamic feedback Stackelberg games with independent and dependent followers. Eur J Oper Res 169(1):310–328CrossRefGoogle Scholar
  34. Nie PY, Lai MY, Zhu SJ (2008a) Dynamic feedback Stackelberg games with non-unique solutions. Nonlinear Anal Theory Methods Appl 69(7):1904–1913CrossRefGoogle Scholar
  35. Nie PY, Lai MY, Zhu SJ (2008) Dynamic feedback Stackelberg games with alternating leaders. Nonlinear Anal Real World Appl 9:536–546 (also Corrected Proof, 2009, available)Google Scholar
  36. Nikaido H (1968) Convex structures and economic theory. Academic, New YorkGoogle Scholar
  37. Ohkubo J, Yasuda M (2005) Preferential urn model and nongrowing complex networks. Phys Rev E 72:0651041–0651044Google Scholar
  38. Ohkubo J, Yasuda M, Tanaka K (2006) Replica analysis of preferential urn mode. J Phys Soc Jpn 75(7):1–6 [Erratum: 76(4), Article No. 048001 (2007, April)]Google Scholar
  39. Pastor-Satorras R, Vázquez A, Vespignani A (2001) Dynamical and correlation properties of the Internet. Phys Rev Lett 87:258701Google Scholar
  40. Samuelson PA (1962) Parable and realism in capital theory: the surrogate production function. Rev Econ Stud 29:193–206CrossRefGoogle Scholar
  41. Schefold B (1976) Relative prices as a function of the rate of profit. Zeitschrift für Nationalökonomie 36:21–48CrossRefGoogle Scholar
  42. Schefold B (1978) On counting equations. Zeitschrift für Nationalökonomie 38:253–285CrossRefGoogle Scholar
  43. Schefold B (1997) Normal prices, technical change and accumulation. Macmillan, LondonCrossRefGoogle Scholar
  44. Schefold B (2008) C.E.S. production functions in the light of the Cambridge critique. J Macroecon 30(2):783–797CrossRefGoogle Scholar
  45. Simaan MA, Cruz JB Jr (1973) A Stackelberg solution for games with many players. IEEE Trans Automat Contr 18:322–324CrossRefGoogle Scholar
  46. Tanimoto J (2007a) Promotion of cooperation by payoff noise in a 2 times 2 game. Phys Rev E 76:0411301–0411308Google Scholar
  47. Tanimoto J (2007b) Does a tag system effectively support emerging cooperation. J Theor Biol 247:754–756CrossRefGoogle Scholar
  48. Thibaut JW, Kelley HH (1959) The social psychology of groups. Wiley, New YorkGoogle Scholar
  49. von Neumann J (1937) Über ein Ökonomisches Gleichungssystem und eine Verallgemeinung des Brouwerschen Fixpunktsatzes, Ergebnisse eines Mathematischen Kollquiums 8 (1935-36), 73-83, Franz-Deuticcke, Leipniz aand Wien, 1937 (translated as A Model of General Economic Equilibrium. Rev Econ Stud 13(1945–46):1–9)Google Scholar
  50. von Stackelberg H (1934) Marktform und Gleichgewichit (Market Structure and Equilibrium). Springer, Wien und Berlin (English translation 1952: H. von Stackelberg, The Theory of the Market Economy, Oxford University Press, Oxford, UK)Google Scholar
  51. Wie BW (2007) Dynamic Stackelberg equilibrium congestion pricing. Transp Res C Emerg Technol 15(3):154–174CrossRefGoogle Scholar
  52. Wright I (2005) The social architecture of capitalism. Phys A Stat Mechanics Appl 346(3–4):589–620CrossRefGoogle Scholar
  53. Xulvi-Brunet R, Sokolov IM (2005) Changing correlations in networks: assortativity and dissortativity. Acta Phys Pol B 36(5):1431–1455Google Scholar
  54. Yang H, Zhang X, Meng Q (2007) Stackelberg games and multiple equilibrium behaviors on networks. Transp Res B Method 41(8):841–861CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Faculty of CommerceChuo UniversityTokyoJapan

Personalised recommendations