Skip to main content

Abstract

In this article, we review a probabilistic method for multivariate interpolation based on Gaussian processes. This method is currently a standard approach for approximating complex computer models in statistics, and one of its advantages is the fact that it accompanies the predicted values with uncertainty statements. We focus on investigating the reliability of the method’s uncertainty statements in a simulation study. For this purpose we evaluate the effect of different objective priors and different computational approaches. We illustrate the interpolation method and the practical importance of uncertainty quantification in interpolation in a sequential design application in sheet metal forming. Here design points are added sequentially based on uncertainty statements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bayarri, M.J., Berger, J.O., Paulo, R., Sacks, J., Cafeo, J.A., Cavendish, J., Lin, C.H., Tu, J.: A framework for validation of computer models. Technometrics 49, 138–154 (2007)

    Article  MathSciNet  Google Scholar 

  • Berger, J.O., de Oliveira, V., Sansó, B.: Objective Bayesian analysis of spatially correlated data. J. Am. Stat. Assoc. 96, 1361–1374 (2001)

    Article  MATH  Google Scholar 

  • Carnell, R.: lhs: Latin Hypercube Samples. R Package Version 0.5 (2009)

    Google Scholar 

  • Cressie, N.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  • Currin, C., Mitchell, T., Morris, M., Ylvisaker, D.: Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments. J. Am. Stat. Assoc. 86, 953–963 (1991)

    Article  MathSciNet  Google Scholar 

  • Diaconis, P.: Bayesian numerical analysis. In: Berger, J., Gupta, S. (eds.) Statistical Decision Theory and Related Topics IV, pp. 163–175. Springer, New York (1988)

    Google Scholar 

  • Fang, K., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Computer Science & Data Analysis. Chapman & Hall/CRC, New York (2006)

    Google Scholar 

  • Geyer, C.J.: mcmc: Markov Chain Monte Carlo. R Package Version 0.6 (2009)

    Google Scholar 

  • Gramacy, R.B., Lee, H.K.H.: Bayesian treed Gaussian process models with an application to computer modeling. J. Am. Stat. Assoc. 103, 1119–1130 (2008)

    Article  Google Scholar 

  • Gramacy, R.B., Polson, N.G.: Particle learning of Gaussian process models for sequential design and optimization. Available at http://www.arxiv.org/abs/0909.5262v1 (2009)

  • Gösling, M., Kracker, H., Brosius, A., Gather, U., Tekkaya, A.: Study of the influence of input parameters on a springback prediction by FEA. In: Proceedings of IDDRG 2007 International Conference, Gyor, Hungary, 21–23 May 2007, pp. 397–404 (2007)

    Google Scholar 

  • Gu, C.: Smoothing Spline ANOVA Models. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Handcock, M.S., Stein, M.L.: A Bayesian analysis of kriging. Technometrics 35, 403–410 (1993)

    Article  Google Scholar 

  • Jones, D., Schonlau, M., Welch, W.: Global optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Kass, R.E., Wasserman, L.: The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 91, 1343–1370 (1996)

    Article  MATH  Google Scholar 

  • Kenett, R., Zacks, S.: Modern Industrial Statistics: Design and Control of Quality and Reliability. Duxbury, San Francisco (1998)

    Google Scholar 

  • Kennedy, M., O’Hagan, A.: Bayesian calibration of computer models. J. R. Stat. Soc. B 63, 425–464 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Krige, D.G.: A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52, 119–139 (1951)

    Google Scholar 

  • Lehman, J., Santner, T., Notz, W.: Designing computer experiments to determine robust control variables. Stat. Sin. 14, 571–590 (2004)

    MATH  MathSciNet  Google Scholar 

  • Matheron, G.: Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963)

    Article  Google Scholar 

  • Oakley, J.E.: Decision-theoretic sensitivity analysis for complex computer models. Technometrics 51, 121–129 (2009)

    Article  Google Scholar 

  • O’Hagan, A.: Curve fitting and optimal design for prediction (with discussion). J. R. Stat. Soc. B 40, 1–42 (1978)

    MATH  MathSciNet  Google Scholar 

  • O’Hagan, A.: Some Bayesian numerical analysis (with discussion). In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics 4, pp. 345–363. Oxford University Press, Oxford (1992)

    Google Scholar 

  • O’Hagan, A., Forster, J.: Kendall’s Advanced Theory of Statistics, vol. 2B: Bayesian Inference, 2nd edn. Arnold, London (2004)

    Google Scholar 

  • Paciorek, C.J., Schervish, M.J.: Nonstationary covariance functions for Gaussian process regression. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

  • Paulo, R.: Default priors for Gaussian processes. Ann. Stat. 33, 556–582 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Ranjan, P., Bingham, D.: Sequential experiment design for contour estimation from complex computer codes. Technometrics 50, 527–541 (2008)

    Article  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16, 351–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Sacks, J., Welch, W., Mitchell, T., Wynn, H.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Santner, T., Williams, B., Notz, W.: Design & Analysis of Computer Experiments. Springer, New York (2003)

    MATH  Google Scholar 

  • Schonlau, M., Welch, W.: Screening the input variables to a computer model via analysis of variance and visualization. In: Dean, A., Lewis, S. (eds.) Screening, pp. 308–327. Springer, New York (2006)

    Chapter  Google Scholar 

  • Seeger, M.: Gaussian processes for machine learning. Int. J. Neural Syst. 14, 69–104 (2004)

    Article  Google Scholar 

  • Tokdar, S.T., Ghosh, J.K.: Posterior consistency of logistic Gaussian process priors in density estimation. J. Stat. Plan. Inference 137, 34–42 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Wahba, G.: Improper priors, spline smoothing and the problem of guarding against model errors in regression. J. R. Stat. Soc. B 40, 364–372 (1978)

    MATH  MathSciNet  Google Scholar 

  • Williams, B., Santner, T., Notz, W.: Sequential design of computer experiments to minimize integrated response functions. Stat. Sin. 10, 1133–1152 (2000)

    MATH  MathSciNet  Google Scholar 

  • Xiong, Y., Chen, W., Apley, D., Ding, X.: A non-stationary covariance based kriging method for meta-modeling in engineering design. Int. J. Numer. Methods Eng. 71, 733–756 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Kracker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kracker, H., Bornkamp, B., Kuhnt, S., Gather, U., Ickstadt, K. (2010). Uncertainty in Gaussian Process Interpolation. In: Devroye, L., Karasözen, B., Kohler, M., Korn, R. (eds) Recent Developments in Applied Probability and Statistics. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2598-5_4

Download citation

Publish with us

Policies and ethics