On Exact Simulation Algorithms for Some Distributions Related to Brownian Motion and Brownian Meanders

  • Luc Devroye


We survey and develop exact random variate generators for several distributions related to Brownian motion, Brownian bridge, Brownian excursion, Brownian meander, and related restricted Brownian motion processes. Various parameters such as maxima and first passage times are dealt with at length. We are particularly interested in simulating process variables in expected time uniformly bounded over all parameters.


Brownian Motion Brownian Bridge Bessel Process Rejection Method Random Variate Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asmussen, S., Glynn, P., Pitman, J.: Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Probab. 5, 875–896 (1995) MATHCrossRefMathSciNetGoogle Scholar
  2. Bertoin, J., Pitman, J.: Path transformations connecting Brownian bridge, excursion and meander. Bull. Sci. Math. 2(118), 147–166 (1994) MathSciNetGoogle Scholar
  3. Bertoin, J., Pitman, J., Ruiz de Chavez, J.: Constructions of a Brownian path with a given minimum. Electron. Commun. Probab. 4, 31–37 (1999) MATHMathSciNetGoogle Scholar
  4. Beskos, A., Roberts, G.O.: Exact simulation of diffusions. Ann. Appl. Probab. 15, 2422–2444 (2005) MATHCrossRefMathSciNetGoogle Scholar
  5. Biane, Ph.: Relations entre pont et excursion du mouvement Brownien. Ann. Inst. H. Poincaré 22, 1–7 (1986) MATHMathSciNetGoogle Scholar
  6. Biane, P., Yor, M.: Valeurs principales associées aux temps locaux Browniens. Bull. Sci. Math. 111, 23–101 (1987) MATHMathSciNetGoogle Scholar
  7. Biane, P., Pitman, J., Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Am. Math. Soc. 38, 435–465 (2001) MATHCrossRefMathSciNetGoogle Scholar
  8. Bonaccorsi, S., Zambotti, L.: Integration by parts on the Brownian meander. Proc. Am. Math. Soc. 132, 875–883 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion: Facts and Formulae. Birkhäuser, Basel (2002) MATHGoogle Scholar
  10. Calvin, J.M.: Efficient simulation for discrete path-dependent option pricing. In: Peters, B.A., Smith, J.S., Medeiros, D.J., Rohrer, M.W. (eds.) Proceedings of the 33rd Winter Simulation Conference, pp. 325–328. IEEE Computer Society, Washington (2001) Google Scholar
  11. Calvin, J.M.: Simulation output analysis based on excursions. In: Proceedings of the 36th Winter Simulation Conference, pp. 681–684. IEEE Computer Society, Washington (2004) Google Scholar
  12. Chung, K.L.: Maxima in Brownian excursions. Bull. Am. Math. Soc. 81, 742–744 (1975) MATHCrossRefGoogle Scholar
  13. Chung, K.L.: Excursions in Brownian motion. Ark. Mat. 155–177 (1976) Google Scholar
  14. Ciesielski, Z., Taylor, S.J.: First passage times and sojourn density for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Am. Math. Soc. 103, 434–450 (1962) MATHCrossRefMathSciNetGoogle Scholar
  15. de Bruijn, N.G., Knuth, D.E., Rice, S.O.: The average height of planted plane trees. In: Read, R.-C. (ed.) Graph Theory and Computing, pp. 15–22. Academic Press, New York (1972) Google Scholar
  16. Denisov, I.V.: A random walk and a Wiener process near a maximum. Theory Probab. Appl. 28, 821–824 (1984) MATHCrossRefGoogle Scholar
  17. Devroye, L.: The series method in random variate generation and its application to the Kolmogorov-Smirnov distribution. Am. J. Math. Manag. Sci. 1, 359–379 (1981) MATHMathSciNetGoogle Scholar
  18. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986) MATHGoogle Scholar
  19. Devroye, L.: Simulating theta random variates. Stat. Probab. Lett. 31, 2785–2791 (1997) CrossRefMathSciNetGoogle Scholar
  20. Devroye, L.: On exact simulation algorithms for some distributions related to Jacobi theta functions. Stat. Probab. Lett. 29, 2251–2259 (2009) CrossRefMathSciNetGoogle Scholar
  21. Duffie, D., Glynn, P.: Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5, 897–905 (1995) MATHCrossRefMathSciNetGoogle Scholar
  22. Durrett, R., Iglehart, D.L.: Functionals of Brownian meander and Brownian excursion. Ann. Probab. 5, 130–135 (1977) MATHCrossRefMathSciNetGoogle Scholar
  23. Durrett, R., Iglehart, D.L., Miller, D.R.: Weak convergence to Brownian meander and Brownian excursion. Ann. Probab. 5, 117–129 (1977) MATHCrossRefMathSciNetGoogle Scholar
  24. Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25, 171–213 (1982) MATHCrossRefMathSciNetGoogle Scholar
  25. Fox, B.L.: Strategies for Quasi-Monte Carlo. Kluwer, Norwell (1999) Google Scholar
  26. Fujita, T., Yor, M.: On the remarkable distributions of maxima of some fragments of the standard reflecting random walk and Brownian motion. Probab. Math. Stat. 27, 89–104 (2007) MATHMathSciNetGoogle Scholar
  27. Gou, T.: Two recursive sampling methods. PhD dissertation, The University of Western Ontario (2009) Google Scholar
  28. Imhof, J.P.: Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications. J. Appl. Probab. 21, 500–510 (1984) MATHCrossRefMathSciNetGoogle Scholar
  29. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1998) Google Scholar
  30. Kennedy, D.P.: The distribution of the maximum Brownian excursion. J. Appl. Probab. 13, 371–376 (1976) MATHCrossRefGoogle Scholar
  31. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, New York (1992) MATHGoogle Scholar
  32. Kolmogorov, A.N.: Sulla determinazione empirica delle leggi di probabilita. G. Ist. Ital. Attuari 4, 1–11 (1933) MATHGoogle Scholar
  33. Lévy, P.: Sur certains processus stochastiques homogènes. Compos. Math. 7, 283–339 (1939) MATHGoogle Scholar
  34. Lévy, P.: Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris (1948) MATHGoogle Scholar
  35. Majumdar, S.N., Randon-Furling, J., Kearney, M.J., Yor, M.: On the time to reach maximum for a variety of constrained Brownian motions. J. Phys. A, Math. Theor. 41 (2008) Google Scholar
  36. McLeish, D.L.: Highs and lows: Some properties of the extremes of a diffusion and applications in finance. Can. J. Stat. 30, 243–267 (2002) MATHCrossRefMathSciNetGoogle Scholar
  37. Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Can. J. Math. 30, 997–1015 (1978) MATHMathSciNetGoogle Scholar
  38. Pitman, J.: Brownian motion, bridge, excursion, and meander characterized by sampling at independent uniform times. Electron. J. Probab. 4(11), 1–33 (1999) MathSciNetGoogle Scholar
  39. Pitman, J., Yor, M.: The law of the maximum of a Bessel bridge. Electron. J. Probab. 4, 1–15 (1999) MathSciNetGoogle Scholar
  40. Pitman, J., Yor, M.: On the distribution of ranked heights of excursions of a Brownian bridge. Ann. Probab. 29, 361–384 (2001) MATHCrossRefMathSciNetGoogle Scholar
  41. Pitman, J., Yor, M.: Infinitely divisible laws associated with hyperbolic functions. Can. J. Math. 53, 292–330 (2003) MathSciNetGoogle Scholar
  42. Renyi, A., Szekeres, G.: On the height of trees. J. Aust. Math. Soc. 7, 497–507 (1967) MATHCrossRefMathSciNetGoogle Scholar
  43. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Grundlehren der mathematischen Wissenschaften, vol. 293. Springer, Berlin (1991) MATHGoogle Scholar
  44. Shepp, L.A.: The joint density of the maximum and its location for a Wiener process with drift. J. Appl. Probab. 16, 423–427 (1979) MATHCrossRefMathSciNetGoogle Scholar
  45. Shorack, G.R., Wellner, J.A.: Empirical Processes with Applications to Statistics. Wiley, New York (1986) MATHGoogle Scholar
  46. Vervaat, W.: A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7, 143–149 (1979) MATHCrossRefMathSciNetGoogle Scholar
  47. von Neumann, J.: Various techniques used in connection with random digits. Collect. Works 5, 768–770 (1963). Also in Monte Carlo Method, National Bureau of Standards Series, vol. 12, pp. 36–38 (1951) Google Scholar
  48. Watson, G.S.: Goodness-of-fit tests on a circle. Biometrika 48, 109–114 (1961) MATHMathSciNetGoogle Scholar
  49. Williams, D.: Decomposing the Brownian path. Bull. Am. Math. Soc. 76, 871–873 (1970) MATHCrossRefGoogle Scholar
  50. Williams, D.: Path decomposition and continuity of local time for one dimensional diffusions I. Proc. Lond. Math. Soc. 28, 738–768 (1974) MATHCrossRefGoogle Scholar
  51. Yor, M.: Some Aspects of Brownian Motion, Part I: Some Special Functionals. Birkhäuser, Basel (1992) MATHGoogle Scholar
  52. Yor, M.: Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems. Birkhäuser, Basel (1997) MATHGoogle Scholar
  53. Zambotti, L.: Integration by parts on δ-Bessel bridges, δ>3, and related SPDEs. Ann. Probab. 31, 323–348 (2003) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations