Classical Life Insurance

  • Tomas Cipra


Chapter 18 contains formulas of classical life insurance: 18.1. Basic Concepts of Life Insurance, 18.2. Symbols and Calculation Principles of Life Insurance, 18.3. Technical Provisions in Life Insurance, 18.4. Pure Endowments, 18.5. Whole Life and Term Insurance, 18.6. Further Products of Capital Life Insurance, 18.7. Life Annuities, 18.8. Multiple Life Insurance, 18.9. Premium Reserve and Its Implications, 18.10. Medical Underwriting.


Life Insurance Insurance Contract Insurance Benefit Profit Sharing Premium Payment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Black, K., Skipper, H.D.: Life Insurance. Prentice-Hall, Englewood Cliffs, NJ (1994)Google Scholar
  2. Booth, P., Chadburn, R.., Cooper, D., Haberman, S., James, D.:Modern Actuarial Theory and Practice. Chapman and Hall /CRC, London (1999)MATHGoogle Scholar
  3. Bowers, N.L. et al.: Actuarial Mathematics. The Society of Actuaries, Itasca, IL (1986)MATHGoogle Scholar
  4. Gerber, H.U.: Lebensversicherungsmathematik. Springer, Berlin (1986) (English translation: Life Insurance Mathematics. Springer, Berlin (1990))Google Scholar
  5. Koller, M.: Stochastische Modelle in der Lebensversicherung. Springer, Berlin (2000)MATHCrossRefGoogle Scholar
  6. Milbrodt, H., Helbig, M.: Mathematische Methoden der Personenversicherung. DeGruyter, Berlin (1999)MATHCrossRefGoogle Scholar
  7. Neill, A.: Life Contingencies. Heinemann, London (1977)Google Scholar
  8. Parmenter, M.M.: Theory of Interest and Life Contingencies, with Pension Applications. ACTEX Publications, Winsted and New Britain, CT (1988)Google Scholar
  9. Reichel, G.: Mathematische Grundlagen der Lebensversicherung. Volumes 3, 5 and 9 of the series Angewandte Versicherungsmathematik der DGVM. Verlag Versicherungswirtschaft, Karlsruhe (1975, 1976, 1978)Google Scholar
  10. Teugels, J., Sundt, B. (eds.): Encyclopedia of Actuarial Science. Wiley, New York (2004)MATHGoogle Scholar
  11. Wolff, K.-H.: Versicherungsmathematik. Springer, Wien, Austria (1970)MATHCrossRefGoogle Scholar
  12. Wolfsdorf, K.: Versicherungsmathematik (Teil 1: Personenversicherung). Teubner, Stuttgart, Germany (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dept. of Statistics, Faculty of Mathematics and PhysicsCharles University of PraguePragueCzech Republic

Personalised recommendations