Actuarial Demography

  • Tomas CipraEmail author


Chapter 17 provides formulas of actuarial demography that are important for life and pension insurance: 17.1. Selected Population Indicators, 17.2. Life Tables, 17.3. Mortality and Survival Modeling, 17.4. Multiple Decrement Models, 17.5. Multiple Life Functions, 17.6. Commutation Functions.


Life Table Total Fertility Rate Insurance Premium Pension Insurance Commutation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Anderson, A.W.: Pension Mathematics for Actuaries. Wellesley, MA (1992)Google Scholar
  2. Batten, R.W.: Mortality Table Construction. Prentice-Hall, Englewood Cliffs, NJ (1978)Google Scholar
  3. Booth, P., Chadburn, R.., Cooper, D., Haberman, S., James, D.: Modern Actuarial Theory and Practice. Chapman and Hall/CRC, London (1999)zbMATHGoogle Scholar
  4. Bowers, N.L. et al.: Actuarial Mathematics. The Society of Actuaries, Itasca, IL (1986)zbMATHGoogle Scholar
  5. Brown, R.L.: Introduction to Mathematics of Demography. ACTEX Publications, Winsted and Avon, CT (1991)Google Scholar
  6. Gerber, H.U.: Lebensversicherungsmathematik. Springer, Berlin (1986) (English translation: Life Insurance Mathematics. Springer, Berlin (1990))Google Scholar
  7. Heubeck, K.: Richttafeln für die Pensionsversicherung. Verlag Heubeck, Köln, Germany (1983)Google Scholar
  8. Keyfitz, N.: Applied Mathematical Demography. Wiley, New York (1977)zbMATHGoogle Scholar
  9. Koller, M.: Stochastische Modelle in der Lebensversicherung. Springer, Berlin (2000)zbMATHCrossRefGoogle Scholar
  10. Lee, E.M.: An Introduction to Pension Schemes. The Institute of Actuaries and the Faculty of the Actuaries, London (1986)Google Scholar
  11. London, D.: Graduation: The Revision of Estimates. ACTEX Publications, Winsted, CT (1985)Google Scholar
  12. Milbrodt, H., Helbig, M.: Mathematische Methoden der Personenversicherung. DeGruyter, Berlin (1999)zbMATHCrossRefGoogle Scholar
  13. Neill, A.: Life Contingencies. Heinemann, London (1977)Google Scholar
  14. Parmenter, M.M.: Theory of Interest and Life Contingencies, with Pension Applications. ACTEX Publications, Winsted and New Britain, CT (1988)Google Scholar
  15. Teugels, J., Sundt, B. (eds.): Encyclopedia of Actuarial Science. Wiley, New York (2004)zbMATHGoogle Scholar
  16. Wolff, K.-H.: Versicherungsmathematik. Springer, Wien (1970)zbMATHCrossRefGoogle Scholar
  17. Wolfsdorf, K.: Versicherungsmathematik (Teil 1: Personenversicherung). Teubner, Stuttgart, Germany (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dept. of Statistics, Faculty of Mathematics and PhysicsCharles University of PraguePragueCzech Republic

Personalised recommendations