Advertisement

Demographic Growth Model

  • Lars Weber
Chapter
Part of the Contributions to Economics book series (CE)

Abstract

This chapter consists of two major parts. In the first subchapter, the semi-endogenous demographic growth model is explained in detail. The model consists of four sectors – population, R&D, growth and utility. The paper is structured in this order, as the origin of growth is the population sector which influences the R&D sector and the growth sector. The utility sector adds to the growth sector and serves as indicator for the evaluation of policies. This subchapter concludes after the model is initialized and executable.

Keywords

Total Fertility Rate Wage Level Growth Sector Saving Ratio Capital Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arnold, L. G. (1997). Wachstumstheorie. München: Vahlen.Google Scholar
  2. Barro, R. J., & Sala-i-Martin, X. (2004). Economic growth. Cambridge, MA: MIT.Google Scholar
  3. Bossel, H. (1994). Modeling and simulation. Wellesley: A K Peters.Google Scholar
  4. Cass, D. (1966). Optimum growth in an aggregative model of capital accumulation: A Turnpike theorem. Econometrica, 34(4), 833–850.CrossRefGoogle Scholar
  5. Cezanne, W. (2005). Allgemeine Volkswirtschaftslehre (Wolls Lehr- und Handbücher der Wirtschafts- und Sozialwissenschaften 6th ed.). München: Oldenbourg.Google Scholar
  6. Forrester, J. W. (1968). Principles of systems. Waltham, MA: Pegasus Communications.Google Scholar
  7. Forrester, J. W. (1971). World dynamics (2nd ed.). Waltham, MA: Pegasus Communications.Google Scholar
  8. Forrester, J. W. (1999). Industrial dynamics. Waltham, MA: Pegasus Communications.Google Scholar
  9. Forrester, J. W., & Senge, P. M. (1980). Tests for building confidence in system dynamics models. In A. A. Legasto, J. W. Forrester, & J. M. Lyneis (Eds.), System dynamics (pp. 209–228). Amsterdam: North-Holland.Google Scholar
  10. Frerichs, W., & Kübler, K. (1980). Gesamtwirtschaftliche Prognoseverfahren. WiSo Kurzlehrbücher. München: Vahlen.Google Scholar
  11. Hirschhäuser, K.-F. (1981). Konjunkturanalyse mit Hilfe von System Dynamics-Simulationsmodellen. Göttingen: Vandenhoeck and Ruprecht.Google Scholar
  12. Imboden, D. M., & Koch, S. (2005). Systemanalyse: Einführung in die mathematische Modellierung natürlicher Systeme (2nd ed.). Berlin: Springer.Google Scholar
  13. Kleinewefers, H., & Jans, A. (1983). Einführung in die volkswirtschaftliche und wirtschaftspolitische Modellbildung. Vahlens Handbücher der Wirtschafts- und Sozialwissenschaften. München: Vahlen.Google Scholar
  14. Koopmans, T. C. (1963). On the concept of optimal economic growth (Cowles Foundation Discussion Papers No. 163). Cowles Foundation. Retrieved August 16, 2009. Available at http://cowles.econ.yale.edu/.
  15. Meadows, D. H. (1972). The limits to growth: A report for the Club of Rome's project on the predicament of mankind. New York: Universe Books.Google Scholar
  16. Meadows, D. H., & Robinson, J. M. (2007). The electronic Oracle: Computer models and social decisions. Albany, NY: Wiley.Google Scholar
  17. Moffat, I. (1992). Causal and simulation modelling using system dynamics. Concepts and techniques in modern geography. Norwich: Environmental Publications.Google Scholar
  18. Myrtveit, M. (2005). The World model controversy (Working Papers in System Dynamics No. WPSD 1/05). Bergen: The system dynamics group department of geography. Retrieved August 17, 2009. Available at www.ifi.uib.no/.
  19. Nordhaus, W. D. (1973). World dynamics: Measurement without data. The Economic Journal, 83(332), 1156–1183.CrossRefGoogle Scholar
  20. Radzicki, M. J. (1994). Evolutionary economics and system dynamics. In R. W. England (Ed.), Evolutionary concepts in contemporary economics (pp. 61–89). Michigan: The University of Michigan Press.Google Scholar
  21. Radzicki, M. J. (2003). Mr. Hamilton, Mr. Forrester, and a foundation for evolutionary economics. Journal of Economic Issues, 37(1), 133–173. Retrieved August 17, 2009. Available at http://michaeljosephradzicki.com/.Google Scholar
  22. Ramsey, F. P. (1928). A mathematical theory of saving. The Economic Journal, 38(152), 543–559.CrossRefGoogle Scholar
  23. Romer, D. (2006). Advanced macroeconomics (3rd ed.). New York: McGraw-Hill.Google Scholar
  24. Rürup, B. (2000). Bevölkerungsalterung und Wirtschaftswachstum: Hypothesen und empirische Befunde. In H. Birg (Ed.), Prosperität in einer alternden Gesellschaft (pp. 83–106). Bad Homburg: Frankfurter Inst. - Stiftung Marktwirtschaft und Politik.Google Scholar
  25. Smith, P. C., & Ackere, A. V. (2002). A note on the integration of system dynamics and economic models. Journal of Economic Dynamics and Control, 26(1), 1–10. Retrieved August 17, 2009, from doi:10.1016/S0165-1889(00)00025-7.CrossRefGoogle Scholar
  26. Sommer, M. (1981). System Dynamics und Makroökonometrie: Dynamische makroökonomische Modellierung in multimethodologischer Sicht (Sozioökonomische Forschungen, Vol. 17). Bern: Paul Haupt.Google Scholar
  27. Sommer, M. (1984). The econometric challenge to system dynamics and vice versa: Some future perspectives. Technological Forecasting and Social Change, 25(3), 263–280. Retrieved August 17, 2009, from doi:10.1016/0040-1625(84)90005-2.CrossRefGoogle Scholar
  28. Sterman, J. D. (1986). The economic long wave: Theory and evidence. System Dynamics Review, 22(2), 87–125. Retrieved August 17, 2009, from doi:10.1002/sdr.4260020202.CrossRefGoogle Scholar
  29. Sterman, J. D. (1989). Deterministic chaos in an experimental economic system. Journal of Economic Behavior and Organization, 12(1), 1–28.CrossRefGoogle Scholar
  30. Sterman, J. D. (2004). Business dynamics: Systems thinking and modeling for a complex World. Boston, MA: McGraw-Hill.Google Scholar

Copyright information

© Physica-Verlag HD 2010

Authors and Affiliations

  1. 1.FOM Hochschule für Oekonomie & Management gGmbHHochschulstudienzentrum LeipzigLeipzigGermany

Personalised recommendations