Filling and D-optimal Designs for the Correlated Generalized Exponential Model

  • Juan M. Rodríguez-Díaz
  • Teresa Santos-Martín
  • Milan Stehlík
  • Helmut Waldl
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


The aim of this paper is to provide guidelines for efficient statistical estimation of the parameters of the modified Arrhenius model for chemical kinetics. We study D-optimal and filling designs for this model, assuming correlated observations and exponential covariance with or without nugget effect. We consider both equidistant and exact designs for small samples, and study the behaviour of different types of filling designs when a greater number of observations is preferred.


Fisher Information Transition State Theory Nugget Effect Exact Design Transition State Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abt, M. and W. Welch (1998). Fisher information and maximum-likelihood estimation of covariance parameters in gaussian stochastic processes. Canadian Journal of Statistics 26, 127–137.MATHCrossRefMathSciNetGoogle Scholar
  2. Dette, H. and S. Sperlich (1994). A note on Bayesian D-optimal designs for a generalizarion of the exponential growth model. South African Statistical Journal 28, 103–117.MATHMathSciNetGoogle Scholar
  3. Gierczak, T., R. Talukdar, S. Herndon, G. Vaghjiani, and A. Ravishankara (1997). Rate coefficients for the reactions of hydroxyl radical with methane and deuterated methanes. Journal of Physical Chemistry A 101, 3125–3134.CrossRefGoogle Scholar
  4. Hill, P. (1980). D-optimal designs for partially nonlinear regression models. Technometrics 22, 275–276.MATHCrossRefMathSciNetGoogle Scholar
  5. International Union of Pure and Applied Chemistry (IUPAC) (2008). Transition state theory. Technical report,
  6. Jet Propulsion Laboratory (2006). Chemical kinetics and photochemical data for use in atmospheric studies, NASA panel for data evaluation. Technical report, California Institute of Technology, Pasadena, California.Google Scholar
  7. KiseǏák, J. and M. Stehlík (2008). Equidistant D -optimal designs for parameters of Ornstein-Uhlenbeck processes. Statistics and Probability Letters 78, 1388–1396.CrossRefMathSciNetGoogle Scholar
  8. Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education 61, 494–498.CrossRefGoogle Scholar
  9. López-Fidalgo, J. and W. Wong (2002). Design issues for the Michaelis-Menten model. Journal of Theoretical Biology 215, 1–11.CrossRefMathSciNetGoogle Scholar
  10. Müller, W. and M. Stehlík (2009). Issues in the optimal design of computer simulation experiments. Applied Stochastic Models in Business and Industry 25, 163–177.CrossRefMathSciNetGoogle Scholar
  11. Müller, W. and M. Stehlík (2010). Compound optimal spatial designs. Environmetrics DOI: 10.1002/env.1009.Google Scholar
  12. Pázman, A. (2007). Criteria for optimal design for small-sample experiments with correlated observations. Kybernetika 43, 453–462.MATHMathSciNetGoogle Scholar
  13. Rodríguez-Aragón, L. and J. López-Fidalgo (2005). Optimal designs for the arrhenius equation. Chemometrics & Intelligent Laboratory Systems 77, 131–138.Google Scholar
  14. Rodríguez-Díaz, J. and M. Santos-Martín (2009). Study of the best designs for modifications of the arrhenius equation. Chemometrics & Intelligent Laboratory Systems 95, 199–208.CrossRefGoogle Scholar
  15. Rodríguez-Díaz, J., T. Santos-Martín, M. Stehlík, and H. Waldl (2009). Filling and d-optimal designs for the correlated generalized exponential models. Technical report, IFAS - JKU University.Google Scholar
  16. Stehlík, M. (2007). D-optimal designs and equidistant designs for stationary processes. In J. López-Fidalgo and B. Rodríguez-Díaz, J.M.and Torsney (Eds.), MODA 8 – Advances in Model-Oriented Design and Analysis , pp. 205–212. Heidelberg: Physica-Verlag.CrossRefGoogle Scholar
  17. Stehlík, M., J. Rodríguez-Díaz, W. Müller, and J. López-Fidalgo (2008). Optimal allocation of bioassays in the case of parametrized covariance functions: an application in lung’s retention of radioactive particles. Test 17, 56–68.MATHCrossRefMathSciNetGoogle Scholar
  18. Vaghjiani, G. and A. Ravishankara (1991). New measurement of the rate coefficient for the reaction of OH with methane. Nature 350, 406–409.CrossRefGoogle Scholar
  19. Zagoraiou, M. and A. Baldi-Antognini (2009). Optimal designs for parameter estimation of the Ornstein-Uhlenbeck process. Applied Stochastic Models in Business and Industry 25, 583–600.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan M. Rodríguez-Díaz
    • 1
  • Teresa Santos-Martín
    • 1
  • Milan Stehlík
    • 2
  • Helmut Waldl
    • 2
  1. 1.Department of StatisticsUniversity of SalamancaSalamancaSpain
  2. 2.Department of Applied StatisticsJohannes Kepler UniversityLinzAustria

Personalised recommendations