Principles for Multivariate Surveillance

  • Marianne Frisén


Multivariate surveillance is of interest in industrial production as it enables the monitoring of several components. Recently there has been an increased interest also in other areas such as detection of bioterrorism, spatial surveillance and transaction strategies in finance.

Several types of multivariate counterparts to the univariate Shewhart, EWMA and CUSUM methods have been proposed. Here a review of general approaches to multivariate surveillance is given with respect to how suggested methods relate to general statistical inference principles.

Suggestions are made on the special challenges of evaluating multivariate surveillance methods.


Control Chart Quality Technology Syndromic Surveillance Surveillance Method Alarm Statistic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt, F. B. (1985) Multivariate quality control. In Encyclopedia of Statistical Science, Vol. 6 (Eds, Johnson, N. L. and Kotz, S.) Wiley, New York, pp. 110-122.Google Scholar
  2. Andersson, E. (2007) Effect of dependency in systems for multivariate surveillance. Research Report 2007:1, Statistical Research Unit, University of Gothenburg.Google Scholar
  3. Basseville, M. and Nikiforov, I. (1993) Detection of abrupt changes- Theory and application, Prentice Hall, Englewood Cliffs.Google Scholar
  4. Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B, 57, 289-300.MATHMathSciNetGoogle Scholar
  5. Bock, D. (2007) Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems. Journal of Applied Statistics, (in press).Google Scholar
  6. Bodnar, O. and Schmid, W. (2004) CUSUM control schemes for multivariate time series. In Frontiers in Statistical Quality Control. Intelligent Statistical Quality control Warsaw.Google Scholar
  7. Chan, L. K. and Zhang, J. (2001) Cumulative sum control charts for the covariance matrix. Statistica Sinica, 11, 767-790.MATHMathSciNetGoogle Scholar
  8. Crosier, R. B. (1988) Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30, 291-303.MATHCrossRefMathSciNetGoogle Scholar
  9. Fricker, R. D. (2007) Directionally Sensitive Multivariate Statistical Process Control Procedures with Application to Syndromic Surveillance Advances in Disease Surveillance, 3, 1-17.Google Scholar
  10. Frisén, M. (1992) Evaluations of Methods for Statistical Surveillance. Statistics in Medicine, 11, 1489-1502.CrossRefGoogle Scholar
  11. Frisén, M. (2003) Statistical surveillance. Optimality and methods. International Statistical Review, 71, 403-434.MATHGoogle Scholar
  12. Frisén, M. and de Maré, J. (1991) Optimal Surveillance. Biometrika, 78, 271-80.MATHMathSciNetGoogle Scholar
  13. Fuchs, C. and Benjamini, Y. (1994) Multivariate profile charts for statistical process control. Technometrics, 36, 182-195.MATHCrossRefGoogle Scholar
  14. Golosnoy, V., Schmid, W. and Okhrin, I. (2007) Sequential Monitoring of Optimal PortfolioWeights. In Financial surveillance (Ed, Frisén, M.) Wiley, Chichester, pp. 179-210.CrossRefGoogle Scholar
  15. Hauck, D. J., Runger, G. C. and Montgomery, D. C. (1999) Multivariate statistical process monitoring and diagnosis with grouped regression-adjusted variables. Communications in Statistics. Simulation and Computation, 28, 309-328.MATHCrossRefGoogle Scholar
  16. Hawkins, D. M. (1991) Multivariate quality control based on regression-adjusted variables. Technometrics, 33, 61-75.CrossRefGoogle Scholar
  17. Healy, J. D. (1987) A note on multivariate CUSUM procedures. Technometrics, 29, 409-412.CrossRefGoogle Scholar
  18. Hochberg, Y. and Tamhane, A. C. (1987) Multiple comparison procedures, Wiley New York.Google Scholar
  19. Hotelling, H. (1947) Multivariate quality control. In Techniques of statistical analysis (Eds,Eisenhart , C., Hastay, M. W. and Wallis, W. A.) McGraw-Hill, New York.Google Scholar
  20. Jackson, J. E. (1985) Multivariate quality control. Communications in Statistics. Theory and Methods, 14, 2657-2688.MATHCrossRefGoogle Scholar
  21. Järpe, E. (1999) Surveillance of the interaction parameter of the Ising model. Communications in Statistics. Theory and Methods, 28, 3009-3027.MATHCrossRefMathSciNetGoogle Scholar
  22. Järpe, E. (2001) Surveillance, environmental. In Encyclopedia of Environmetrics (Eds, El-Shaarawi, A. and Piegorsh, W. W.) Wiley, Chichester.Google Scholar
  23. Knoth, S. and Schmid, W. (2002) Monitoring the mean and the variance of a stationary process. Statistica Neerlandica, 56, 77-100.MATHCrossRefMathSciNetGoogle Scholar
  24. Kourti, T. and MacGregor, J. F. (1996) Multivariate SPC methods for process and product monitoring. Journal of Quality Technology, 28, 409-428.Google Scholar
  25. Liu, R. Y. (1995) Control charts for multivariate processes. Journal of the American Statistical Association, 90, 1380-1387.MATHCrossRefMathSciNetGoogle Scholar
  26. Lowry, C. A. and Montgomery, D. C. (1995) A review of multivariate control charts. IIE Transactions, 27, 800-810.CrossRefGoogle Scholar
  27. Lowry, C. A., Woodall, W. H., Champ, C. W. and Rigdon, S. E. (1992) A multivariate exponentially weighted moving average control chart. Technometrics, 34, 46-53.MATHCrossRefGoogle Scholar
  28. Lu, X. S., Xie, M., Goh, T. N. and Lai, C. D. (1998) Control chart for multivariate attribute processes. International Journal of Production Research, 36, 3477-3489.MATHCrossRefGoogle Scholar
  29. Maravelakis, P. E., Bersimis, S., Panaretos, J. and Psarakis, S. (2002) Identifying the out of control variable in a multivariate control chart. Communications in Statistics. Theory and Methods, 31, 2391-2408.MATHCrossRefMathSciNetGoogle Scholar
  30. Marshall, C., Best, N., Bottle, A. and Aylin, P. (2004) Statistical issues in the prospective monitoring of health outcomes across multiple units. Journal of the Royal Statistical Society A, 167, 541-559.CrossRefMathSciNetGoogle Scholar
  31. Mason, R. L., Tracy, N. D. and Young, J. C. (1995) Decomposition of T2 for multivariate control chart interpretation. Journal of Quality Technology, 27, 99-108.Google Scholar
  32. Mastrangelo, C. M., Runger, G. C. and Montgomery, D. C. (1996) Statistical process monitoring with principal components. Quality and Reliability Engineering International, 12, 203-210.CrossRefGoogle Scholar
  33. Mohebbi, C. and Havre, L. (1989) Multivariate control charts: A loss function approach.Sequential Analysis, 8, 253-268.MATHCrossRefMathSciNetGoogle Scholar
  34. Mostashari, F. and Hartman, J. (2003) Syndromic surveillance: a local perspective. Journal of Urban Health, 80, I1-I7.Google Scholar
  35. Ngai, H. M. and Zhang, J. (2001) Multivariate cumulative sum control charts based on projection pursuit. Statistica Sinica, 11, 747-766.MATHMathSciNetGoogle Scholar
  36. Okhrin, Y. and Schmid, W. (2007) Surveillance of Univariate and Multivariate Nonlinear Time Series. In Financial surveillance (Ed, Frisén, M.) Wiley, Chichester, pp. 153-177.CrossRefGoogle Scholar
  37. Pignatiello, J. J. and Runger, G. C. (1990) Comparisons of multivariate CUSUM charts. Journal of Quality Technology, 22, 173-186.Google Scholar
  38. Reynolds, M. R. and Keunpyo, K. (2005) Multivariate Monitoring of the Process Mean Vector With Sequential Sampling. Journal of Quality Technology, 37, 149-162.Google Scholar
  39. Rogerson, P. A. (1997) Surveillance systems for monitoring the development of spatial patterns. Statistics in Medicine, 16, 2081-2093.CrossRefGoogle Scholar
  40. Rolka, H., Burkom, H., Cooper, G. F., Kulldorff, M., Madigan, D. and Wong, W.-K. (2007) Issues in applied statistics for public health bioterrorism surveillance using multiple data streams: research needs. Statistics in Medicine, 26, 1834-1856.CrossRefMathSciNetGoogle Scholar
  41. Rosolowski, M. and Schmid, W. (2003) EWMA charts for monitoring the mean and the autocovariances of stationary Gaussian processes. Sequential Analysis, 22, 257-285.MATHCrossRefMathSciNetGoogle Scholar
  42. Runger, G. C. (1996) Projections and the U2 chart for multivariate statistical process control. Journal of Quality Technology, 28, 313-319.Google Scholar
  43. Runger, G. C., Barton, R. R., Del Castillo, E. and Woodall, W. H. (2007) Optimal Monitoring of Multivariate Data for Fault Detection”. Journal of Quality Technology, 39, 159-172.Google Scholar
  44. Runger, G. C., Keats, J. B., Montgomery, D. C. and Scranton, R. D. (1999) Improving the performance of the multivariate exponentially weighted moving average control chart. Quality and Reliability Engineering International, 15, 161-166.CrossRefGoogle Scholar
  45. Ryan, T. P. (2000) Statistical methods for quality improvement, Wiley, New York.MATHGoogle Scholar
  46. Sahni, N. S., Aastveit, A. H. and Naes, T. (2005) In-Line Process and Product COntrol Using Spectroscopy and Multivariate Calibration. Journal of Quality Technology, 37, 1-20.Google Scholar
  47. Scranton, R. D., Runger, G. C., Keats, J. B. and Montgomery, D. C. (1996) Efficient shift detection using multivariate exponentially-weighted moving average control charts and principal components. Quality and Reliability Engineering International, 12, 165-171.CrossRefGoogle Scholar
  48. Shewhart, W. A. (1931) Economic Control of Quality of Manufactured Product, MacMillan and Co., London.Google Scholar
  49. Shiryaev, A. N. (1963) On optimum methods in quickest detection problems. Theory of Probability and its Applications, 8, 22-46.MATHCrossRefGoogle Scholar
  50. Skinner, K. R., Montgomery, D. C. and Runger, G. C. (2003) Process monitoring for multiple count data using generalized linear model-based control charts. International Journal of Production Research, 41, 1167-1180.MATHCrossRefGoogle Scholar
  51. Sonesson, C. and Frisén, M. (2005) Multivariate surveillance. In Spatial surveillance for public health (Eds, Lawson, A. and Kleinman, K.) Wiley, New York, pp. 169-186.Google Scholar
  52. Steiner, S. H., Cook, R. J. and Farewell, V. T. (1999) Monitoring paired binary surgical outcomes using cumulative sum charts. Statistics in Medicine, 18, 69-86.CrossRefGoogle Scholar
  53. Sullivan, J. H. and Jones, L. A. (2002) A self-starting control chart for multivariate individual observations. Technometrics, 44, 24-33.CrossRefMathSciNetGoogle Scholar
  54. Timm, N. H. (1996) Multivariate quality control using finite intersection tests. Journal of Quality Technology, 28, 233-243.Google Scholar
  55. Tsui, K. L. and Woodall, W. H. (1993) Multivariate control charts based on loss functions. Sequential Analysis, 12, 79-92.MATHCrossRefGoogle Scholar
  56. Wessman, P. (1998) Some Principles for surveillance adopted for multivariate processes with a common change point. Communications in Statistics. Theory and Methods, 27, 1143-1161.MATHCrossRefMathSciNetGoogle Scholar
  57. Woodall, W. H. and Amiriparian, S. (2002) On the economic design of multivariate control charts. Communications in Statistics -Theory and Methods, 31, 1665-1673.MATHCrossRefMathSciNetGoogle Scholar
  58. Woodall, W. H. and Ncube, M. M. (1985) Multivariate cusum quality control procedures. Technometrics, 27, 285-292.MATHCrossRefMathSciNetGoogle Scholar
  59. Wärmefjord, K. (2004) Multivariate quality control and Diagnosis of Sources of Variation in Assembled Products. Licentiat Thesis, Department of Mathematics, Göteborg University.Google Scholar
  60. Yashchin, E. (1994) Monitoring Variance Components. Technometrics, 36, 379-393.MATHCrossRefGoogle Scholar
  61. Yeh, A. B., Lin, D. K. J., Zhou, H. H. and Venkataramani, C. (2003) A multivariate exponentially weighted moving average control chart for monitoring process variability. Journal of Applied Statistics, 30, 507-536.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2010

Authors and Affiliations

  • Marianne Frisén
    • 1
  1. 1.Department of Economics, Göteborg UniversityStatistical Research UnitGöteborgSweden

Personalised recommendations