Adaptive Charting Techniques: Literature Review and Extensions

  • Fujee Tsung
  • Kaibo Wang


The continuous development of SPC is driven by challenges arising from practical applications across diverse industries. Among others, adaptive charts are becoming more and more popular due to their capability in tackling these challenges by learning unknown shifts and tracking time-varying patterns. This chapter reviews recent development of adaptive charts and classifies them into two categories: those with variable sampling parameters and those with variable design parameters. This review focuses on the latter group and compares their charting performance. As an extension to conventional multivariate charts, this work proposes a double-sided directionally variant chart. The proposed chart is capable of detecting shifts having the same or opposite directions as the reference vector and is more robust to processes with unpredictable shift directions.


Independent Component Analysis Control Chart Exponentially Weighted Move Average Statistical Process Control Quality Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albazzaz, H., and Wang, X. Z. (2004). "Statistical process control charts for batch operations based on independent component analysis." Industrial & Engineering Chemistry Research, 4321, 6731-6741.CrossRefGoogle Scholar
  2. Albin, S. L., Kang, L., and Shea, G. (1997). "An X and EWMA chart for individual observations." Journal of Quality Technology, 291, 41-48.Google Scholar
  3. Apley, D. W., and Shi, J. (1999). "The GLRT for statistical process control of autocorrelated processes." IIE Transactions, 3112, 1123-1134.Google Scholar
  4. Apley, D. W., and Tsung, F. (2002). "The autoregressive T-2 chart for monitoring univariate autocorrelated processes." Journal of Quality Technology, 341, 80-96.Google Scholar
  5. Atienza, O. O., Tang, L. C., and Ang, B. W. (2002). "A CUSUM scheme for autocorrelated observations." Journal of Quality Technology, 342, 187-199.Google Scholar
  6. Bakshi, B. R. (1998). "Multiscale PCA with application to multivariate statistical process monitoring." AIChE Journal, 447, 1596-1610.CrossRefGoogle Scholar
  7. Capizzi, G., and Masarotto, G. (2003). "An adaptive exponentially weighted moving average control chart." Technometrics, 453, 199-207.CrossRefMathSciNetGoogle Scholar
  8. Chih-Min, F., Ruey-Shan, G., Shi-Chung, C., and Chih-Shih, W. (2000). "SHEWMA: an end-of-line SPC scheme using wafer acceptance test data." Semiconductor Manufacturing, IEEE Transactions on, 133, 344-358.CrossRefGoogle Scholar
  9. Choi, S. W., Martin, E. B., Morris, A. J., and Lee, I. B. (2006). "Adaptive multivariate statistical process control for monitoring time-varying processes." Industrial & Engineering Chemistry Research, 459, 3108-3118.CrossRefGoogle Scholar
  10. Ding, Y., Zeng, L., and Zhou, S. Y. (2006). "Phase I analysis for monitoring nonlinear profiles in manufacturing processes." Journal of Quality Technology, 383, 199-216.Google Scholar
  11. Ganesan, R., Das, T. K., and Venkataraman, V. (2004). "Wavelet-based multiscale statistical process monitoring: A literature review." IIE Transactions, 369, 787-806.CrossRefGoogle Scholar
  12. Han, D., and Tsung, F. (2006). "A reference-free Cuscore chart for dynamic mean change detection and a unified framework for charting performance comparison." Journal of the American Statistical Association, 101473, 368-386.MATHCrossRefMathSciNetGoogle Scholar
  13. Hawkins, D. M. (1993). "Regression adjustment for variables in multivariate quality control." Journal of Quality Technology, 253, 170-182.Google Scholar
  14. Jackson, J. E. (1991). A User's Guide to Principal Components, Wiley, New York.MATHCrossRefGoogle Scholar
  15. Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., and Woodall, W. H. (2006). "Effects of parameter estimation on control chart properties: A literature review." Journal of Quality Technology, 384, 349-364.Google Scholar
  16. Jeong, M. K., Lu, J. C., Huo, X. M., Vidakovic, B., and Chen, D. (2006). "Wavelet- based data reduction techniques for process fault detection." Technometrics, 481, 26-40.CrossRefMathSciNetGoogle Scholar
  17. Jiang, W. (2004a). "A joint monitoring scheme for automatically controlled processes." IIE Transactions, 3612, 1201-1210.CrossRefGoogle Scholar
  18. Jiang, W. (2004b). "Multivariate control charts for monitoring autocorrelated processes." Journal of Quality Technology, 364, 367-379.Google Scholar
  19. Jolliffe, I. T. (2002). Principal component analysis, Springer, New York.MATHGoogle Scholar
  20. Jones, L. A. (2002). "The statistical design of EWMA control charts with estimated parameters." Journal of Quality Technology, 343, 277-288.Google Scholar
  21. Jones, L. A., Champ, C. W., and Rigdon, S. E. (2004). "The run length distribution of the CUSUM with estimated parameters." Journal of Quality Technology, 361, 95-108.Google Scholar
  22. Kang, L., and Albin, S. L. (2000). "On-line monitoring when the process yields a linear profile." Journal of Quality Technology, 324, 418-426.Google Scholar
  23. Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). "On the monitoring of linear profiles." Journal of Quality Technology, 353, 317-328.Google Scholar
  24. Lee, J. M., Yoo, C., and Lee, I. B. (2003). "Statistical process monitoring with multivariate exponentially weighted moving average and independent component analysis." Journal of Chemical Engineering of Japan, 365, 563-577.CrossRefGoogle Scholar
  25. Li, B. B., Morris, J., and Martin, E. B. (2002). "Model selection for partial least squares regression." Chemometrics and Intelligent Laboratory Systems, 641, 79-89.CrossRefGoogle Scholar
  26. Lin, W. S. W., and Adams, B. M. (1996). "Combined control charts for forecastbased monitoring schemes." Journal of Quality Technology, 283, 289-301.Google Scholar
  27. Lowry, C. A., and Montgomery, D. C. (1995). "A review of multivariate control charts." IIE Transactions, 276, 800-810.CrossRefGoogle Scholar
  28. Lu, C. W., and Reynolds, M. R., Jr. (1999). "EWMA control charts for monitoring the mean of autocorrelated processes." Journal of Quality Technology, 312, 166-188.Google Scholar
  29. Lucas, J. M. (1982). "Combined Shewhart-CUSUM quality control schemes." Journal of Quality Technology, 14, 51-59.Google Scholar
  30. Macgregor, J. F., Jaeckle, C., Kiparissides, C., and Koutoudi, M. (1994). "Process Monitoring and Diagnosis by Multiblock Pls Methods." Aiche Journal, 405, 826-838.CrossRefGoogle Scholar
  31. Mastrangelo, C. M., Runger, G. C., and Montgomery, D. C. (1996). "Statistical process monitoring with principal components." Quality and Reliability Engineering International, 12, 203-210.CrossRefGoogle Scholar
  32. Montgomery, D. C. (2005). Introduction to statistical quality control, John Wiley, Hoboken, N.J.MATHGoogle Scholar
  33. Montgomery, D. C., and Mastrangelo, C. M. (1991). "Some statistical process control methods for autocorrelated data." Journal of Quality Technology, 233, 179-193.Google Scholar
  34. Nomikos, P., and Macgregor, J. F. (1995). "Multivariate SPC Charts for Monitoring Batch Processes." Technometrics, 371, 41-59.MATHCrossRefGoogle Scholar
  35. Palm, A. C., Rodriguez, R. N., Spiring, F. A., and Wheeler, D. J. (1997). "Some perspectives and challenges for control chart methods." Journal of Quality Technology, 292, 122-127.Google Scholar
  36. Pandit, S. M., and Wu, S. M. (1993). Time series and system analysis with applications, Krieger Pub. Co., Malabar, Florida.Google Scholar
  37. Reynolds, M. R., Jr., and Stoumbos, Z. G. (2005). "Should exponentially weighted moving average and cumulative sum charts be used with Shewhart limits?" Technometrics, 474, 409-424.CrossRefMathSciNetGoogle Scholar
  38. Runger, G. C., and Alt, F. B. (1996). "Choosing principal components for multivariate statistical process control." Communications in Statistics-Theory and Methods, 255, 909-922.MATHCrossRefMathSciNetGoogle Scholar
  39. Shewhart, W. A. (1931). Economic control of quality of manufactured product, D.Van Nostrand, New York.Google Scholar
  40. Shu, L. J., Apley, D. W., and Tsung, F. (2002). "Autocorrelated process monitoring using triggered Cuscore charts." Quality and Reliability Engineering International, 18, 411-421.CrossRefGoogle Scholar
  41. Shu, L. J., and Jiang, W. (2006). "A Markov chain model for the adaptive CUSUM control chart." Journal of Quality Technology, 382, 135-147.Google Scholar
  42. Sparks, R. S. (2000). "CUSUM charts for signaling varying location shifts." Journal of Quality Technology, 322, 157-171.Google Scholar
  43. Spitzlsperger, G., Schmidt, C., Ernst, G., Strasser, H., and Speil, M. (2005). "Fault detection for a via etch process using adaptive multivariate methods." IEEE Transactions on Semiconductor Manufacturing, 184, 528-533.CrossRefGoogle Scholar
  44. Tagaras, G. (1998). "A survey of recent developments in the design of adaptive control charts." Journal of Quality Technology, 303, 212-231.Google Scholar
  45. Tsung, F. (2000). "Statistical monitoring and diagnosis of automatic controlled processes using dynamic PCA." International Journal of Production Research, 383, 625-637.MATHCrossRefGoogle Scholar
  46. Tsung, F., and Apley, D. W. (2002). "The dynamic T-2 chart for monitoring feedback- controlled processes." IIE Transactions, 3412, 1043-1053.Google Scholar
  47. Tsung, F., Zhou, Z. H., and Jiang, W. (2007). "Applying Manufacturing Batch Techniques to Fraud Detection with Incomplete Customer Information." IIE Transactions, 39, 671-680.CrossRefGoogle Scholar
  48. Tucker, W. T., Faltin, F. W., and VanderWiel, S. A. (1993). "Algorithmic statistical process-control - an elaboration." Technometrics, 354, 363-375.CrossRefGoogle Scholar
  49. Wang, K., and Tsung, F. (2005). "Using Profile Monitoring Techniques for a Data- rich Environment with Huge Sample Size." Quality and Reliability Engineering International, 21, 677-688.CrossRefGoogle Scholar
  50. Wang, K., and Tsung, F. (2007a). "An Adaptive T2 Chart for Monitoring Dynamic Systems." Journal of Quality Technology, Accepted.Google Scholar
  51. Wang, K., and Tsung, F. (2007b). "Monitoring feedback-controlled processes using adaptive T2 schemes." International Journal of Production Research, 4523, 5601-5619.MATHCrossRefGoogle Scholar
  52. Williams, J. D., Woodall, W. H., and Birch, J. B. (2007). "Statistical Monitoring of Nonlinear Product and Process Quality Profiles." Quality and Reliability Engineering International, 238, 925-941.CrossRefGoogle Scholar
  53. Woodall, W. H. (2000). "Controversies and contradictions in statistical process control." Journal of Quality Technology, 324, 341-350.Google Scholar
  54. Woodall, W. H. (2006). "The use of control charts in health-care and public-health surveillance." Journal of Quality Technology, 382, 89-104.Google Scholar
  55. Woodall, W. H., and Montgomery, D. C. (1999). "Research issues and ideas in statistical process control." Journal of Quality Technology, 314, 376-386.Google Scholar
  56. Woodall, W. H., Spitzner, D. J., Montgomery, D. C., and Gupta, S. (2004). "Using control charts to monitor process and product quality profiles." Journal of Quality Technology, 363, 309-320.Google Scholar
  57. Yoo, C. K., Choi, S. W., and Lee, I. B. (2002). "Dynamic monitoring method for multiscale fault detection and diagnosis in MSPC." Industrial & Engineering Chemistry Research, 4117, 4303-4317.CrossRefGoogle Scholar
  58. Zhou, S., Jin, N., and Jin, J. (2005). "Cycle-based signal monitoring using a directionally variant multivariate control chart system." IIE Transactions, 3711, 971-982.CrossRefGoogle Scholar
  59. Zimmer, L. S., Montgomery, D. C., and Runger, G. C. (2000). "Guidelines for the application of adaptive control charting schemes." International Journal of Production Research, 389, 1977-1992.MATHCrossRefGoogle Scholar

Copyright information

© Physica-Verlag Heidelberg 2010

Authors and Affiliations

  • Fujee Tsung
    • 1
  • Kaibo Wang
    • 2
  1. 1.Department of Industrial Engineering and Logistics ManagementHong Kong University of Science and TechnologyKowloonHong Kong
  2. 2.Department of Industrial EngineeringTsinghua UniversityBeijingP. R. China

Personalised recommendations