Skip to main content

Hierarchical Modeling for Monitoring Defects

  • Chapter
  • First Online:
Book cover Frontiers in Statistical Quality Control 9

Summary

In semiconductor manufacturing, discovering the processes that are attributable to defect rates is a lengthy and expensive procedure. This paper proposes a approach for understanding the impact of process variables on defect rates. By using a process-based hierarchical model, we can relate sub-process manufacturing data to layer-specific defect rates. This paper demonstrates a hierarchical modeling method using process data drawn from the Gate Contact layer, Metal 1 layer, and Electrical Test data to produce estimates of defect rates. A benefit of the hierarchical approach is that the parameters of the high-level model may be interpreted as the relative contributions of the sub-models to the overall yield. Additionally, the output from the sub-models may be monitored with a control chart that is ‘oriented’ toward yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cunningham, S.P. and MacKinnon, S. (1998) Statistical methods for visual defect methodology. IEEE Transactions on Semiconductor Manufacturing 11(1): 48-53.

    Article  Google Scholar 

  • Friedman, D.J., Hansen, M.H., Nair, V.N. and James, D.A. (1997) Model-free estimation of defect clustering in integrated circuit fabrication. IEEE Transactions in Integrated Circuit Manufacturing 10(3): 344-359.

    Google Scholar 

  • Hansen, M.H., Nair, V.N. and Friedman, D.J. (1997) Monitoring wafer map data from integrated circuit fabrication processes for spatially clustered defects. Technometrics 39(3): 241-254.

    Article  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R. and Friedman, J. (2001) The elements of statistical learning: data mining, inference, and prediction. Springer-Verlag, Berlin New York.

    MATH  Google Scholar 

  • Hess, C. and Weiland, L.H. (1999) Extraction of wafer-level defect density distributions to improve yield prediction. IEEE Transactions on Semiconductor Manufacturing 12(2): 175-183.

    Article  Google Scholar 

  • Horton, D. (1998) Modeling the yield of mixed-technology die. Solid State Technology 41(9): 109-119.

    Google Scholar 

  • Hosmer, D. W. and Lemeshow, S. (2000). Applied logistic regression, 2nd ed., John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Jearkpaporn, D., Montgomery, D.C., Runger, G. and Borror, C.M. (2003) Process monitoring for correlated gamma distributed data using generalized linear model based control charts. Quality and Reliability Engineering International 19(6): 477-491.

    Article  Google Scholar 

  • Johnson, R.A. and Wichern, D.W. (1992). Applied multivariate statistical analysis, 3rd ed., Prentice Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Kumar N, Kennedy K, Gildersleeve K, Abelson R, Mastrangelo CM, and Montgomery DC (2006) A review of yield modeling techniques for semiconductor manufacturing. International Journal of Production Research 44(23): 5019-5036.

    Article  MATH  Google Scholar 

  • McCullagh P and Nelder JA (1989) Generalized linear models. Chapman & Hall, London.

    MATH  Google Scholar 

  • Montgomery DC (2005) Introduction to statistical quality control 5th ed. John Wiley & Sons, NY.

    MATH  Google Scholar 

  • Myers RH, Montgomery DC, and Vining GG (2002). Generalized linear models with applications in engineering and the sciences, John Wiley & Sons, NY.

    MATH  Google Scholar 

  • Nurani RK, Strojwas AJ, Maly WP, Ouyang C, Shindo W, Akella R, McIntyre MG, and Derrett J (1998) In-line yield prediction methodologies using patterned wafer inspection information. IEEE Transactions on Semiconductor Manufacturing 11(1): 40- 47.

    Article  Google Scholar 

  • Skinner KR, Montgomery DC, Runger GC, Fowler JW, McCarville DR, Rhoads TR and Stanley JD (2002) Multivariate statistical methods for modeling and analysis of wafer probe test data. IEEE Transactions on Semiconductor Manufacturing 15(4): 523-530.

    Article  Google Scholar 

  • Skinner KR, Montgomery DC, and Runger GC (2003) Process monitoring for multiple count data using generalized linear model-based control charts. International Journal of Production Research 41(6): 1167-1180.

    Article  MATH  Google Scholar 

  • Van Zant P (2004) Microchip fabrication: a practical guide to semiconductor processing. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina M. Mastrangelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Mastrangelo, C.M., Kumar, N., Forrest, D. (2010). Hierarchical Modeling for Monitoring Defects. In: Lenz, HJ., Wilrich, PT., Schmid, W. (eds) Frontiers in Statistical Quality Control 9. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2380-6_15

Download citation

Publish with us

Policies and ethics