A Study on University Students’ Opinions about Teaching Quality: a Model Based Approach for Clustering Ordinal Data

Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


In complex surveys aimed at measuring the satisfaction level of final users of a given product or service, several items are generally investigated. Also, respondents often belong to different categories since they are stratified according to relevant features, such as geographic location or gender. In such situations, the comparison among the distributions of ratings given to a selection of items by interviewees or to a single item by different groups of interviewees can provide a meaningful summary of observed data.


Rating Distribution Ordinal Data Mixture Distribution Positive Judgement Complete Linkage Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is part of PRIN 2006–2008 project on: “Metodi e modelli statistici per la valutazione dei processi formativi” and has benefited from support of MiPAAF ex CFEPSR (Portici). The author thanks the University of Naples Federico II, and especially the Nucleo di Valutazione di Ateneo and UPSV for kindly providing the data set which has been analyzed in this chapter.


  1. 1.
    Balirano G, Corduas M (2008) Detecting semiotically expressed humor in diasporic TV productions. Humor: Int J Humor Res 3:227–251CrossRefGoogle Scholar
  2. 2.
    Bernardi L, Capursi V, Librizzi L (2004) Measurement awareness: the use of indicators between expectations and opportunities. In: Atti della XLII Riunione Scientifica SIS. Cleup, Padova, pp 315–326Google Scholar
  3. 3.
    Biggeri L (2000) Valutazione: idee, esperienze, problemi. Una sfida per gli statistici. In: Atti della XL Riunione Scientifica SIS. CS2p, Firenze, pp 31–48Google Scholar
  4. 4.
    Biggeri L, Bini M (2001) Evaluation at University and State level in Italy: need for a system of evaluation and indicators. Tertiary Educ Manage 7:149–162CrossRefGoogle Scholar
  5. 5.
    Bock HH (1996) Probabilistic models in cluster analysis. Comput Stat Data Anal 23:5–28CrossRefGoogle Scholar
  6. 6.
    Bock HH (1998) Probabilistic aspects in classification. In: Hayashi C, Yajima K, Bock HH, Oshumi N, Tanaka Y, Baba Y (eds) Data science, classification and related methods. Springer, New-York, NY, pp 3–21Google Scholar
  7. 7.
    Capursi V, Porcu M (2001) La didattica universitaria valutata dagli studenti: un indicatore basato su misure di distanza fra distribuzioni di giudizi. In: Atti della Riunione Intermedia SIS on “Processi e Metodi Statistici di Valutazione”, RomaGoogle Scholar
  8. 8.
    CNVSU (2002) Proposta di un insieme minimo di domande per la valutazione della didattica da parte degli studenti frequentanti. Doc 9/02, http://www.cnsvu.it
  9. 9.
    Corduas M (2008) A testing procedure for clustering ordinal data by CUB models. Proceedings of SFC-CLADAG 2008 Meeting. ESI, Napoli, pp 245–248Google Scholar
  10. 10.
    Corduas M, Iannario M, Piccolo D (2009) A class of statistical models for evaluating services and performances. In: Bini M, Monari P, Piccolo D, Salmaso S (eds) Statistical methods for the evaluation of educational services and quality of products. Contribution to Statistics. Physica-Verlag, Heidelberg, pp 99–117CrossRefGoogle Scholar
  11. 11.
    D’Elia A (2007) A statistical modelling approach for the analysis of TMD chronic pain data. Stat Methods Med Res 16:1–15Google Scholar
  12. 12.
    D’Elia A, Piccolo D (2005) A mixture model for preference data analysis. Comput Stat Data Anal 49:917–934CrossRefGoogle Scholar
  13. 13.
    Fabbris L (ed) (2006) Effectiveness of university education in Italy: employability. Competences, human capital. Springer, HeidelbergGoogle Scholar
  14. 14.
    Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. JASA 97:611–631Google Scholar
  15. 15.
    Iannario M (2007) A statistical approach for modelling Urban Audit Perception Surveys. Quaderni di Statistica 9:149–172Google Scholar
  16. 16.
    Kullback S (1959) Information theory and statistics. Dover Publ., New York, NYGoogle Scholar
  17. 17.
    Kupperman M (1957) Further applications of information theory to multivariate analysis and statistical inference. George Washington University, Washington, DCGoogle Scholar
  18. 18.
    McCormick WT, Schweitzer PJ, White TW (1972) Problem decomposition and data reorganization by a clustering technique. Oper Res 20:993–1009CrossRefGoogle Scholar
  19. 19.
    McLachlan GJ, Basford KE (1988) Mixture models: inference and application to clustering. Marcel Dekker, New York, NYGoogle Scholar
  20. 20.
    Piccolo D (2003) On the moments of a mixture of Uniform and shifted Binomial random variables. Quaderni di Statistica 5:85–104Google Scholar
  21. 21.
    Piccolo D (2006) Observed information matrix for MUB models. Quaderni di Statistica 8:33–78Google Scholar
  22. 22.
    Piccolo D, D’Elia A (2008) A new approach for modelling consumers’ preferences. Food Qual Prefer 19:247–259CrossRefGoogle Scholar
  23. 23.
    Podani J (2005) Multivariate exploratory analysis of ordinal data in ecology: pitfalls, problems and solutions. J Veg Sci 16:497–510CrossRefGoogle Scholar
  24. 24.
    Vermunt JK, Magidson J (2002) Latent class cluster analysis. In: Hagenaars JA, McCutcheon AL (eds) Advances in latent class analysis. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Dipartimento di Scienze StatisticheUniversità di Napoli Federico IINapoliItaly

Personalised recommendations